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Abstract. The need for appropriate applications of the various similarity measures for clustering has arisen over the years as 

data massively keeps on increasing. The issue of deciding which similarity measure is the best and on what kind of dataset 

have been a very cumbersome task in the field of data mining, data science, and organizations that are highly depending on the 

knowledge outcome from a huge set of data to make some vital / crucial decisions. Because various datasets portray some 

common features associated with them; therefore the need for clearer understanding of various similarity measures for cluster-

ing different datasets is needed. This paper presents a critical review of various similarity measures applied in text and data 

clustering. A theoretical comparison has been made to check the suitability of the measures on different kind of data sets. 
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1.  Introduction 

Currently, we are faced with so much ever in-

creased volume of documents that need to be operat-

ed upon before knowledge can be extracted from 

them [1]. There is abundant of documents moving 

over the Internet, huge document are collected over 

the digital libraries, repositories, and personal infor-

mation that are digitized such as articles in the blog 

and emails which are quickly piling up every day [2]. 

These has pose a challenge on how efficient and ef-

fective we can organize the documents contents for 

easy access when need arise. In several applications, 

there is necessity to algorithmically measure the 

similarity between two strings comprising of symbols 

from alphabet in finite series [3]. For instance, identi-

fying automatically the confusion between names of 

two drugs, it will be helpful to know that measure of 

similarity between Tarodol and Tagredol is higher 

than the similarity between Tarodol and Indarel. The 

problem of measuring the similarity between strings 

of a document occurs in different fields, which in-

clude speech recognition, bioinformatics, machine 

translation information retrieval, lexicography, and 

dialectology [3]. An issue related to computing the 

measure of similarity between texts as strings of 

words has been studied also. 

Clustering has been a useful and important method 

that organizes automatically collection huge number 

of data objects into much smaller number of logical 

groups [3, 4]. For an example having an efficient 

document clustering, deciding appropriately the simi-

larity measure to use has been proven to be a signifi-

cant part of the clustering approach for some time 

now and also an interesting problem to research as 

well [2]. This is becoming more interesting even and 

demanding with World Wide Web development and 

the evolution of the Web 2.0. For instance, every 

results returned by the search engines are clustered to 

help focus the users search to relevant set of results. 

Many online stores customers have clusters such as 

the Amazon.com, to help provide recommendations 

collaboratively. In collaborative tagging and book-

marking, users of same clusters have same traits us-

ing their annotation for identification. 

Document clustering in general groups documents 

with high similarity forming logical cluster, while 

documents with high dissimilarity are separated into 

different clusters. Though, the similarity definition of 

documents being similar or different has not always 

been clear and normally possess some variations with 

the actual setting of the problem [1]. For instance, to 

cluster research papers they are only regarded as sim-

ilar if their thematic topics can be shared between 

them. Deploying clustering on the web sites, the in-
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terested aspect is the clustering of the component 

pages according to the information type presented in 

the page. For example, dealing with university web 

sites, we may wish to separate between students and 

professors home pages, and research pages from 

courses pages. This clustering can cause more benefit 

analyzing further and dataset utilization such as re-

trieval of information and extraction of information, 

by similar types of information source grouped to-

gether. 

Accuracy in clustering requires that closeness be-

tween pair of objects been defined precisely, in either 

pair wised or distance terms. So many similarity or 

distance measures have been proposed and applied 

widely, such as the Jaccard coefficient similarity and 

cosine similarity. In the meantime, similarity is most-

ly looked at in terms of dissimilarity or distance as 

well [5]. Pair wise distance calculation has been done 

using measure such as Euclidean distance or relative 

entropy and others [6]. The diversity of distance and 

similarity measures available for clustering docu-

ments, their effectiveness in any type of document 

clustering is still a challenge and not clear, although 

Akinwale et al. compared the effectiveness of some 

measures, but just focus on the n-gram measures ba-

sically and has not really discuss the basis of their 

existence [7]. 

In general, distance measure can be categorized in-

to six (6) dimensions namely: Edit-based, Token-

based, Hybrid, Structural (Domain-dependent), Pho-

netic, and Numeric [8, 9]. In this paper, we presented 

a systematic comparison of the various similarity 

measures on large text collection. The performances 

of the similarity measures based on the above six 

dimensions on various data sets are also analyzed. 

The strengths, weaknesses, space and time complexi-

ties of the above similarity measures are also pre-

sented. An experiment on R programming environ-

ment has been conducted on different dataset to de-

cide on the applicability of different similarity 

measures.  

Rest of the paper is organized as follows. Section 

2 presents how important similarity measure is in 

clustering of text document and successful areas of 

application. Section 3 and Section 4 described the 

edit-based and the token-based similarity measures in 

details with solved problems for better demonstra-

tions. Section 5 described other similarity measures 

in brief. Section 6 presents the results analysis, while 

Section 7 concludes the paper. 

 
 

2. Similarity Measure and Its Importance 

Generally text document files are unstructured 

which makes them not appropriate for regular data-

bases. These documents contain various types of in-

formation, which understanding them automatically 

by direct clustering algorithms is very difficult [10]. 

Therefore, this unstructured terms in the documents 

should be converted to a format that is suitable to 

conduct some operations on them [4]. Mining useful 

information and pertinent data from variety of textu-

al/ other types of document sources involves many 

kind activities, also extracting important knowledge 

from large data requires scalable analytics and intel-

ligence services, techniques and good applications [2, 

11] . However, little value has always been found in 

the extracted data in its row formats. Severally, web 

search have been confused with text mining. As 

much as they both result in data acquisition, the input 

has large gap. Users are dedicated towards specific 

data acquiring in web search, which mostly may en-

tails specified and/ known data search [5, 8]. Many 

spell checking techniques have been discussed in the 

past without clearly stating their class based, some 

which are [9]: similarity keys, rule based techniques, 

n-gram based technique, neural network, and proba-

bilistic techniques. The dimension reduction has been 

an significant preprocessing stage in the text group-

ing for analysis of  the dimensions reduction for fea-

tures space by removing the uninformative features 

[10]. 

Essentially some models for similarity measures 

are based on probability approach one of such is the 

n-gram, while other measures are not based on prob-

ability, but accurate measures [7]. These measures 

have been successfully apply in a wide variety of 

domains and problems such as compression of text, 

detection of spelling error and correction [12, 13]. 

Optical character recognition, retrieval of infor-

mation [11, 12, 14], categorization of text automati-

cally, representation of music, handwriting recogni-

tion and speech [15, 16]. Other domains that are use-

ful include immunology computation, whole-genome 

protein sequence analysis [17]. Attribution of author-

ship, identification of language, tree reconstruction of 

phylogenetic, integration of data, cleaning and filter-

ing, English language prediction [18], algorithms for 

phonetic matching, and retrieval text [19]. 

An example is the general string searching which 

has been done by some of the similarity measures 

such as n-grams [20], while others has been applied 

in some other are used for computer viruses detection 



[21]. Many of these methods have been proven to be 

important in various tasks ranging from two texts 

comparisons to the level of quantification of the ho-

mology degree in the sequence. Problems in different 

research areas such computer science, biology, and 

operational research, etc. have applied some of the 

similarity measures without given specific concerns 

to the base of the similarity measures. Some token 

based measures have been used to grade text in 

mathematics [7]. Plagiarized text have been deter-

mined using some of these similarity measures (to-

ken-based) from a pool of METER corpus [19,20, 21, 

22]. All research on the various similarity measures 

application have indicated that there is so much need 

for more research in making decisions on what type 

of similarity measure is best and the type of data set 

[7] . 

Clustering a dataset is highly dependent on the 

similarity measures. The similarity measures indicate 

the level of nearness or severance between the data 

items, and this should be common to the characteris-

tics of the clusters of the data item which distin-

guished them with all other clusters [23]. Severally 

these characteristics depend on either data or context 

of the problem present, there is no distance measure 

which have been separately agreed universally to be 

the best for all types of problems in clustering. Fur-

thermore, to choose appropriately the similarity 

measure to use is a very paramount for the analysis 

of cluster, more especially for some unique kinds of 

clustering algorithms. Taking for example the clus-

tering algorithms that are density-based, such as the 

DBScan [1], heavily depend on the computation of 

the similarity. Clusters are found to be as dense areas 

in data set using the density-based clustering, and the 

projected closeness of the matching data object to its 

adjacent objects is in turn the same as that of the giv-

en point. Noting that similarity/distance value is 

quantified by the closeness, it is clear that finding 

dense areas and projected clusters assignment of  any 

new data object is dependent on the largeness of the 

similarity/distance computations. Therefore having a 

good understanding of the efficiency of the various 

measures is of enormous significance in choosing the 

best one.   

Generally, distance/similarity measures indicates 

the similarity or the distance that exist between two 

distinct objects symbolic description into a numeric 

value, and this depends majorly on two factors- the 

two objects properties and their measures. In order to 

make the objective of this work clear we have con-

ducted the review with some solve examples on some 

data set and the advantages and disadvantages of the 

similarity measures is also stated. These measures 

discussed below, different measures not only in dis-

tinct concluding representations, but also subject dis-

tinct requirements for the same clustering algorithm. 

Characteristics of distance measure are defined by 

the following metric: 

 

Metric 

 

Several distance measures exist but not all have 

been qualify to be a metric. There are generally four 

conditions that must be satisfied by any measure d to 

be qualified as a metric [1]. 

Let d(a, b) be the measure between any two ob-

jects a and b in a set. 

1. The measure between any two separate points 

must be non negative, that is, d(a, b) ≥ 0. 

2.  The measure between two separate objects 

must be zero if and only if the objects are identical, 

that is, d(a, b) = 0 for all a = b. 

3.   Distance measure must be symmetric, that is, 

distance from a to b should be same as distance from 

b to a, i.e. d(a, b) = d(b, a). 

4.  The distance measure must satisfy the inequality 

of triangle, which is d(a, c) ≤ d(a, b) + d(b, c)   

3. Token-Based Similarity Measures 

3.1. Cosine Similarity  

Documents are mostly represented as a vector 

where each attribute is representing the frequency 

with which a particular term in a document occurs. 

The term vector representation of documents is used 

to find the similarity between the two corresponding 

documents and this show the correlation between the 

vectors. This is term as the cosine of the angles be-

tween two vectors, which is the so called Cosine sim-

ilarity. This is one of the distance measure mostly 

apply in the clustering of text documents, such in 

retrieval of information applications [7] and cluster-

ing also [24].  

Given two documents a and b, the cosine similarity 

between them can be defined using the following 

formula: 

                 
        

              
  , 

 

Where ai and bi are vectors of m-dimensions over 

the document set a and b, i = 1, 2, 3, . . .,N. Each di-

mension of the document is a non negative. The co-



sine similarity is a non-negative value as a result and 

it’s bounded between [0, 1]. 

The Cosine similarity has an important property 

which is its independence on the length of the docu-

ment. For an example when you want to combine 

two documents of identical copies of a document a to 

have a new document a’, 1 will be the Cosine simi-

larity between a and a’, this mean that the two docu-

ments are identical. For now given other document l, 

a, a’ the similarity measure will be same with the 

value l, which means that sim (a, l)=sim(a’, l). These 

mean that, documents that are having the same ele-

ments but differently in total are identically treated. 

This does not satisfy the metric second condition 

above; this is because after the whole combination 

the copies, the object will be different from the origi-

nal document. Though, in practice, when normalizing 

two vector terms to a unit length such as 1, as in this 

case is the same for both a and a’. Example 1 given 

below illustrates this distance measure. 

 

Example 1: Find the cosine similarity between the 

two documents a = “Desmond” and b = “Diamonds”  

Step 1: Term Frequency (TF) 

D, e, s, m, o, n, d = 2, 1, 1, 1, 1, 1 

D, i, a, m, o, n, d, s = 2, 1, 1, 1, 1, 1, 1 

 

Normalized Term Frequency of a and b 

Using the formula NTF = 
                         

                                
 

D = 2/7 = 0.285, e = 0.143, s = 0.143, m = 0.143, o = 

0.143, n = 0.143 and  

D = 2/8 = 0.25, i = 0125, a = 0125, m = 0125, o = 

0125, n = 0125, s = 0125 

 

Step 2: Inverse Document Frequency (TDF) 

Using the formula IDF = 1 + loge 
                         

                                           
 

D = 1 + 1 + loge 
 

 
 = 1 + 0 = 1, e = 1.6931, s = 1, m = 

1, o = 1, n = 1, a =1.6931, i = 1.6931 

 

Step 3: Term Frequency (TF) * Inverse Document 

Frequency (TDF) for a and b 

D = 0.143 * 1, e = 0.242, s = 0.143, m = 0.143, o = 

0.143, n = 0.143 and 

D = 0.25, i = 0.211, a = 0.211, m = 0.125, o = 0.125, 

n = 0.125, s = 0.125 

 

Step 4: Vector Space Model – Cosine similarity 

SIMCos (a, b) = 
                  

            
  

Dot product (a, b) = (0.285 * 0.25) + (0.242 * 0) + 

(0.143 * 0.125) + (0.143 * 0.125) + (0.143 * 0.125) + 

(0.143 * 0.125) + (0.2116 * 0) + (0.2116 * 0) = 

0.1428 

|| a || = ((0.285)
2
 +(0.242)

2 
+ (0.143)

2 
+ (0.143)

2 
+ 

(0.143)
2 
+ (0.143)

2
)

0.5
= (0.2215)

0.5
 = 0.4707 

|| b || = ((0.25)
2
 +(0.2116)

2 
+ (0.2116)

2 
+ (0.125)

2 
+ 

(0.125)
2 
+ (0.125)

2
)

0.5
= (0.1519)

0.5
 = 0.3897 

|| a || * || b || = 0.4707 * 0.3897 = 0.1834 

SIMCos (a, b) = 
       

      
 = 0.7781 

 

Advantages 

 

It’s very simple; the relevancy of tokens is better 

reflected. It’s evaluation is very efficient. It is less 

sensitive towards swaps and gives value between [0, 

1]. 

 

Disadvantages 

 

Typographic errors between tokens are penalized, for 

example the similarity between ‘sean bay’ and 

‘shown boy’ will be zero. The difference in ratings 

given to the items by various users is not taken into 

consideration in the computation. 

3.2. Jaccard Coefficient Similarity  

Jaccard coefficient, has been referred to as 

Tanimoto coefficient, is a similarity measure based 

on dividing the intersection by the objects union. 

Also it is applicable mostly in text clustering. 

Tanimoto coefficient uses a comparison between 

shared terms sum up the weight to the terms weight 

present in any of the document but not a shared terms 

between the two.  

Given two documents ai and bi their Jaccard coef-

ficient can be determine using the following formula: 

              

 
                    

                                            =   

                    

                      

The measure of the similarity of the Jaccard coef-

ficient ranges between 0 and 1. It becomes 1 if ai = bi  

and 0 when both ai and bi are not having anything in 

common (disjoint), where 1 and 0 means the two 

objects are similar and completely dissimilar respec-

tively. The distance measure corresponding to them 

is DJ = 1 - SIMJ and DJ  can be use in experiments. 

 

Example 2: Given the two words terms Jones and 

Johnson, their tokens are (“Desmond, Diamonds”) 

                     = 4, 



                       = 13 

SIMjacc [ai, bi] = 4/13 =0.3077 

 

Advantages 

 

It’s less sensitive to the word swaps, because it con-

sider only whether token exist, not its position. Its 

evaluation is very efficient and is very simple to 

evaluate.  

 

Disadvantages 

 

Typographic errors between tokens are penalized, for 

example the similarity between ‘sean bay’ and 

‘shown boy’ will be zero. Significance of the simi-

larity measure is penalized in case of any error. 

3.3. General n-gram Similarity  

This algorithm was introduced by Niewiadomski. 

It measures to template string from an answer string 

as represented in the following formula [7]: 

SIM (a1,a2) = f(m1,m2)              
   

  
     

Where f(m1, m2) = 
 

                               
 represent the 

number of substring not shorter then m1 and also not 

longer than m2 in a1, g(i, j) = 1 if and only if i – ele-

ment-long substring of the string a1 start from j-th 

position in a1 at least appears once in the a2 else g(i, j) 

= 0. If there exist a substring in other from one ar-

gument of comparison, the absolute similarity level 

will be measured as 1 which is identical of a1 and a2 

[7].  M(a1), M(s2) = the length of string a1 and a2, M = 

max (M(a1), M(s2)) 

 

3.4.  Bigram Similarity  

 

The general n-gram measure has been used to de-

rive several other gram algorithms including the bi-

gram where n is equal to 2, therefore the formula is 

as follows: SIM(a1,a2)=
 

       
           

   

 

       
       

 

     
     
           

    

 

3.5.  Trigram Similarity  

 

The trigram is also a special type of n-gram where 

n is equal to 3, two strings a1 and a2 similarity can be 

determined by the following formula: 

SIM(a1, a2) =
 

       
           

   

 

       
       

 

     
     
           

    

 

3.6.  Oddgram Similarity  

 

This is a special type of n-gram that takes m(m-

1)/2 processing substrings before the performance is 

measure. This take the n-gram matching substrings 

by half for processing which still reduce running time. 

The match strings for the method is denoted by a1, a2 

and max(M(a1), M(a2)) = M which represent the 

maximum between the two strings a1 and a2. If M is 

an odd number then M =   
  

 
   

SIM (a1, a2) = 
 

    
             

   
 
    otherwise 

 

      
             

   
 
    

 

3.7.  Sumsquare Gram Similarity  

 

This has it root from the n-gram measure in which 

the time for processing is quadratic for all the n-gram 

in the line statement query. Even though n-gram sim-

ilarity measure are easy to manage and generate, their 

time and space complexity are quadratic and there-

fore good for both sumsquare gram and oddgram 

since they work in quadratic. The sumsquare gram 

and oddgram measure write their results in pair sub-

missions (text and pattern matching). Given pattern 

and text matching i and j, aij is close to 1 only if they 

are both identical and also close to 0 if they are very 

different. This means that both oddgram and 

sumsquare grams normalized form falls in the inter-

val [0, 1]. Likewise oddgram and sumsquare grams 

measure of similarity are symmetrically expected, 

meaning aij = aji will hold for all i, j. The matched 

string for sumsquare denoted by a1, a2 and 

max(M(a1), M(a2)) = M taking the maximum length 

of the two string a1 and a2. M =      
N = times to jump = M – 1 

Q = first jump =           

SIMsq (a1, a2) =  
 

            
         

   
 
    

 



3.8.  Set-based Trigram Similarity  

 

This similarity measure technique is derived from 

the set theory of similarity measure. This is concern 

with measuring similarity in terms of number of 

common trigram of two set of entities. The string 

sharing of both pattern and text matching weight are 

increased by three times. This is asymmetric since it 

does not give consideration to (false, false) to be a 

matching pattern. It is represented by the following 

formula:  

SBT : T(A, B) = 
                

                                   
 

 

Examples 3: given a1 = Desmond, a2 = Diamonds. 

M(a1) = 7 and M(a2 ) = 8, Max {M(a1); M(a2)} = 8 

a2 occurs in the substring of a1 as follows: 

 1-element D, m, o, n, d= 5 

 2-element Dm, mo, on, nd = 4 

 3-element Dmo, mon, ond = 3 

 4-element Dmon, mond = 2 

 5 -element Dmond = 1 

  

1. General n-gram measure 

SIM(a1, a2) = 
 

    
 

             
   

  
    =

 

    
 

         

 
=

    

  
=0.4166 

2. Bigram measure 

SIM (a1, a2)= 
 

       
        

   = 
 

      
 

 

 
 

= 0.7777 

3. Trigram measure 

SIM (a1, a2) = 
 

       
        

    = 
 

   
   

= 
 

 
 = 0.5000 

4. Oddgram measure  If M is odd then M= 

  
  

 
   = M = even =   

  

 
   = 4, 

SIM (a1, a2) =  
 

      
             

   
 
    

= 
 

      
 

     

 
 = 

 

  
 = 0.3500 

5. Sumsquare gram measure = M =       = 2 

= time to jump = M – 1=2 – 1= 1 , Q = first 

jump = M
2
 – (M – 1)

2
 = 2

2
 – 1

2
 =3, 1

2
 - 1

2
= 

0  

SIMsq (a1, a2) =  
 

            
         

   
 
   = 

 

       
 

   

 
  = 

 

 
 = 1.0000 

6. Set-based trigram measure SBT : T(a1, a2) = 
                

                                   
 = 

     

     
  

= 
 

  
 = 0.6000 

Advantages 

 

This uses overlapping which reduces the effect of 

the typographical error in the computation. It’s very 

efficient and always captured automatically the most 

frequent root string. 

 

Disadvantages 

 

Some n-grams such as sumsquare gives approxi-

mated result. It is very difficult to compute and eval-

uate. It is time consuming. 

4. Edit-Based Similarity Measures 

4.1. Levenshtein Similarity 

This is the distance between two strings which is 

based on the minimum number of operations; the 

operations are insertions, deletions, and substitutions 

which are required in transforming a string into the 

other second string, this is also referred to as the 

Levenshtein distance and it exist in two variants 

which are: Optimal string alignment and Demarau-

Levenshtein. Both the algorithms can do the same 

thing as Levenshtein except they can accomplish 

transposition too. The difference between Optimal 

String Alignment and Damerau-Levenshtein is that 

Optimal String Alignment Algorithm only completes 

transposition under the condition that no substring is 

edited more than once whereas Damerau-Levenshtein 

is not restricted by such a thing. That is also why 

Optimal String Alignment is sometimes called the 

Restricted Edit Distance. This aim at finding the edit 

distance between two strings, together with their op-

timal transcript which describes the transformation 

that take place [25]. Insertion operation: Replace 

the blank by the desired character i.e a δ (, a);  ~ a, 

Deletion operation: Replace the desired character by 

blank i.e  δ (a, ); a ~ , Replacement operation: 

Replace the desired character by the other character 

needed i.e a by b; δ (a, b); a ~ b. This algorithm com-



pute transcript base on the dynamic programming 

algorithm, the principle of optimality of this algo-

rithm is that; the best overall solution must always 

contain the best transcript of the two substrings. The 

algorithm can be represented as follows: 

 Initialize matrix M of size (|s1| + 1) × (|s2| + 

1) 

 Fill matrix: Mi,0 = i and M0,j = j 

 Recursion: Mi,j = {
Mi-1,j-1

 
if x[i] = y[i] else

 1+ min (Mi –

1,j, Mi,j –1, Mi – 1, j -1)  

 Distance: LevenshteinDist (x, y) = M|x|,|y| 

Levenshtein Similarity: SIMLevenshtein (a1, a2) = 1 – 
                      

            
 

 

Example 4:  Given a1 = Desmond and a2 = Dia-

monds, the Levenshtein distance = 3 the Levenshtein 

similarity measure is given as: 

SIMLevenshtein (a1, a2) = 1 – 
 

            
 = 0.6250 

 

 

Advantages  

 

It is simple and fast. It is highly applicable on 

small and big strings. It is not restricted to strings 

having same length and the cost at most can be the 

length of the longest string. 

 

Disadvantages  

 

Running Levenshtein on two long strings results in 

a long time and a big cost that is proportional to the 

product of the two string lengths 

4.2. Needleman-Wunsh Similarity 

This is also called the optimal alignment and was 

introduce in 1970, the algorithm model variations 

between more explicitly strings than a series of trans-

formation. This algorithm is an application of best 

path strategy (Dynamic programming) used in find-

ing optimal alignment of sequence. 

The basic idea behind this algorithm is from the 

fact the any path that lead to an optimal path point is 

also an optimal path. Hence the optimal path is a col-

lection of several sub-path, in this algorithm the op-

timal path take from the beginning to the end of both 

the sequence involved, which bring about the concept 

of ‘global alignment’[26]. The similarity score 

alignment is computed as for example given that the 

alignment between strings x and y is A, a score ma-

trix C(xi, yj) and gap penalty cg, the score of the (x, y) 

given the A is the sum of the score of all matches in 

the A minus the penalties for the gap. Dynamic Pro-

gramming can be applied to a large search space that 

can be structured into a succession of stages such 

that: 

 The initial stage contains trivial so-

lutions to sub-problems 

 Each partial solution in a later stage 

can be calculated by recurring on 

only a fixed number of partial solu-

tions in an earlier stage. 

 The final stage contains the overall 

solution. 

This algorithm has three basic stages in the com-

putation of it similarity measure as stated below: 

 Initialization 

  Matrix fill or scoring 

 Trace back and alignment 

The computation of the Needleman-Wunsch score 

is done by the following formula: 

S(i, j) = max (s (i-1, j-1) + c(xi, yj), s(i-1, j) + cg – 

(gap) – 1, s(i, j -1) + cg) ) 

Initially s(0, j) = - jcg 

    s(i, 0)= -icg 

 

Example 5: One possible alignment between a= 

Desmond and b = Diamonds, showing (D e s m o n d 

- = D i a m o n d s). Assign score for a correspond-

ence between every pair of characters; penalizes 

transformations on a case by case basis. A corre-

spondence of two identical characters may score 2; or 

-1 otherwise and a gap penalty A gap of length 1 has 

a penalty cg (ex: 1); a gap of length k has a penalty 

k*cg, therefore 2 (for match D-D) – 1 (for match e-a) 

- 1 (for match s- a) + 2 (for match m-m) + 2 (for 

match o-o) + 2 (for match n-n) + 2 (for match d-d) - 1 

(for gap s) = 1, 2 – 1 – 1 + 2 + 2 + 2 + 2 –  1 = 4 – 3 

= 7,  

SIMNw (a, b) = 1 - 
 

 
 = 0.8571 

 

Advantages  

 

It is a fast algorithm for sequence alignment. It is 

efficient. It allows different penalties for variations 

between strings. It gives the global score of the string 

and therefore increases the general scope. It explicit-

ly models gaps in the alignment of the two strings, 

and assigns an arbitrary cost to the gap.  



Disadvantages  

 

It is slow to compute. It consumes a lot of space 

and is difficult to evaluate 

4.3. Jaro-Winkler Similarity 

This similarity measure works on the number of 

mismatch between two strings by character transposi-

tions been allowed a type of edit operation that per-

forms comparison using dynamic programming prin-

ciples [9]. The Jaro was invented in the year 1989 

and it is essentially used to compare two strings a1 

and a2 by common character identification among the 

two strings. The characters are said to be common to 

the two strings if and only if they appear in equal 

positions within the two strings, this is respectively 

denoted by i and j, not different from the h of the 

shorter string. This is formally represented as |i - j| 

0.5 × min (|a1|, |a2|). Immediately all characters com-

mon are identified, both a1 and a2 are sequentially 

traversed, and determining the number t of transposi-

tions of the common characters where when i -th 

common character of a1 is not equal to the i –th 

common character of a2 then transposition occurs. 

Give the number of transposition t set δ of common 

characters, the Jaro similarity measure can be com-

puted using the following formula: 

SIMJaro (a1, a2) = 
 

 
  

   

  
 

   

  
  

         

   
  

 

Example 6: Given a1 = Desmond and a2 = Dia-

monds. Then | a1| = 7 and | a2| = 8. The maximum 

distance between characters that are common is 0.5 

          = 3.5. The common character set is    = 

{D, m, o, n, d}, where _ is the space character. None 

of the matching line crosses another matching lines, 

indicating that none of the common characters pro-

duces a transposition, making have t = 0. Then the 

Jaro distance is as thus: 

SIMJaro (a1, a2) = 
 

 
  

 

 
 

 

 
  

    

 
  = 0.7798 

This algorithm is generally performing well on 

strings that have slight spelling variations. But be-

cause of the restriction on common characters have 

to occur in certain distance from each other. , this 

does not cope well with longer strings separating 

common characters. This problem mostly occurs for 

names with common prefix but one name has an ad-

ditional suffix (e.g Desmond B vs. Desmond Bala 

stored as first name). This is what because the exten-

sion of this algorithm to a new modified one called 

Jaro-Winkler similarity measure invented in 1991, 

given consideration of two special strings a1 and a2 

with a common prefix , the Jaro-Winkler similarity 

can be computed with following formula: 

SIMJaro-Winkler[a1, a2]=JaroSim(a1, a2)+ |  |×f × (1 

JaroSim(a1, a2)), where f is a constant scaling factor 

of how much corrected upward based on the common 

prefix    of the similarity measure. 

 

Example 7: Given a1 = Desmond and a2 = Dia-

monds, there are 5 common characters between the 

two strings corresponding to the common prefix   = 

peter. There are no permutation of characters as 

clearly indicated in   so t = 0. Then the SIMJaro (a1, 

a2) = 0.7798.  By the assumption that the scaling 

factor f = 0.1the Taro-Winkler similarity measure is: 

SIMJaro-Winkler (a1, a2) = 0.7798 + 5× 0.1 ×(1 – 

0.7798) = 0.8899 

 

Advantages  

 

It is very accurate. It is very efficient and is very 

flexible to accommodate variation in strings 

 

Disadvantages  

 

This does not cope well with longer strings sepa-

rating common characters. It reduces the score of 

similarity in case of a longer string 

5. Other Similarity Measures 

Some measures are mostly used for duplication de-

tection, buy none is applicable conceivable to all sce-

narios. As seen some are special for short strings and 

others are for long strings with few typographical 

errors while others are insensitive to word swaps [9]. 

There is need to introduce some other special cases 

similarity measures i.e phonetic, numeric, structural, 

hybrid similarities respectively. 

5.1. Phonetic Similarity 

This is a similarity measure that focuses spoken 

words sounds, which might be very similar despite 

the large differences in the spelling. For example, the 

two strings Czech and Cheque are not very similar, 

but however they are hardly distinguishable phoneti-

cally. Hence they are said to have a large phonetic 

similarity.  

A very common phonetic coding scheme is known 

as Soundex, and the computational idea of the pho-

netic similarity is first transforming strings(or tokens) 



into  their various phonetic representation and the 

similarity measure is then applied on the strings or 

tokens on Soundex representation [9]. 

 

5.2. Numeric Similarity 

This is the similarity measure applied to numeric 

data. Normally, numbers are considered as strings, 

that yields unsatisfactory results, for example when 

comparing 1999 and 2000. The measure of the dif-

ference between the two numbers compared is a solu-

tion, i.e [1999-2000]. Though in different domains, 

there are different meanings to difference in numbers. 

For example, a microscopic scale difference meas-

urement, a 1mm is a very large difference, but on 

macroscopic it is almost nothing. A “normalize” way 

possible is taking the distribution of values in the 

domain into account [9]. 

 

5.3. Structural Similarity 

This similarity measure takes the structure of the 

data into consideration, with no just focus on the con-

tent as seen in the other similarity measures. Though, 

putting the structure into consideration may be of 

great relevant, e.g when comparing XML data trees. 

The widely used similarity measure is the trees edit 

distance and the variation thereof [9]. Importantly, 

the tree edit distance is also an edit-based measure of 

similarity (such as levenshtein distance), but does not 

edit operations on characters except on all the strings 

or token structure. 

5.4. Hybrid Similarity 

This similarity measure is combining both the to-

kenization and string similarity score. This algorithm 

is referred to as hybrid because of the feature of both 

tokenization and string similarity combination. The 

extended Jaccard similarity, and Monge-Elkan simi-

larity are types of this similarity measure, because 

they includes similar tokens in set of overlapping 

descriptive data [9]. 

6. Result and Conclusion 

6.1. Result 

Table 1 below show the comparison of the similar-

ity measures based on some properties. As it is indi-

cated in the table below Needleman-Wunsh and the 

Jaro-Winkler measures are having worst complexities 

in both time and space with high space consumption 

and low overall performance. The n-gram has the 

second highest complexity both in time and space, 

but having moderate use memory in execution. On 

average the Jaccard and Cosine have similar com-

plexity in time and space with low consumption of 

memory and high performances rate.  

6.2. Conclusion   

This paper presents a rigorous theoretical review 

on the various similarity measures used in clustering 

the huge dataset. Similarity measure provides the 

level to which documents are near or far from each 

other. From the study conducted, it is shown that the 

most of edit-based similarity measures have higher 

complexities in both time and space than token-based, 

as a result of these complexities the memory con-

sumption of the edit-based measures are higher than 

the token-based. From the study conducted its clearly 

shown that Levenshtein, Needleman, and Jaro 

measures are applied in mainly text documents, while 

the cosine, Jaccard, are applied mainly in documents 

collection, and the n-grams measures are for both text 

and document datasets. Also it is recommended from 

the study the token-based similarity measures are 

applied in clustering huge document of different kind, 

and the edit-based are applied to text documents in 

specific. 
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Table 1: Comparison of the various similarity measures 

S/

no 

Measur

es/ Prop-

erties 

Time 

Complexity 

Space 

Complexity 

Cate-

gory of 

Measure 

Based 

Memory 

Space Con-

sumption 

General 

Performance 

Rating 

Refer-

ence 

Type 

of data 

1 Cosine O(n) O(n) To-

ken-based 

Low High [7,24] Docu-

ments 

2 Jaccard On(1) On(1) To-
ken-based 

Low High [22] Docu-
ments 

3 n-gram O(mn) O(m3) To-

ken-based 

Moderate Moderate [7] Docu-

ments and 
text 

4 Levens

htein 

O( |m| . 

|n| ) 
 

O( min(|

m|, |n|)) 
 

Edit-

based 

Low High [25] Text 

5 Needle

man-

Wunsh 

O(mn) 

quadratic 

O(mn) 

quadratic 

Edit-

based 

High Low [6,26] Text 

6 Jaro-

Winkler 

O(|m| + 

|n|) quadrat-

ic 

O(|m| + 

|n|) quadrat-

ic 

Edit-

based 

High Low [6,9] Text 

m= Number of terms / characters, n= Size of the data set/ document
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