
Efficient Similarity Measures for Clustering a

Huge Dataset: A Critical Review

Desmond Bala Bisandu

 a, Rajesh Prasad
b
 and Musa Muhammad Liman

c

a,b, c
School of IT & Computing, American University of Nigeria, Yola, Nigeria

desmond.bisandu@aun.edu.ng, rajesh.prasad@aun.edu.ng, muhammad.liman@aun.edu.ng

Abstract. The need for appropriate applications of the various similarity measures for clustering has arisen over the years as

data massively keeps on increasing. The issue of deciding which similarity measure is the best and on what kind of dataset

have been a very cumbersome task in the field of data mining, data science, and organizations that are highly depending on the

knowledge outcome from a huge set of data to make some vital / crucial decisions. Because various datasets portray some

common features associated with them; therefore the need for clearer understanding of various similarity measures for cluster-

ing different datasets is needed. This paper presents a critical review of various similarity measures applied in text and data

clustering. A theoretical comparison has been made to check the suitability of the measures on different kind of data sets.

Keywords: Similarity measures, document clustering, text document, Euclidean distance, and edit distance.

1. Introduction

Currently, we are faced with so much ever in-

creased volume of documents that need to be operat-

ed upon before knowledge can be extracted from

them [1]. There is abundant of documents moving

over the Internet, huge document are collected over

the digital libraries, repositories, and personal infor-

mation that are digitized such as articles in the blog

and emails which are quickly piling up every day [2].

These has pose a challenge on how efficient and ef-

fective we can organize the documents contents for

easy access when need arise. In several applications,

there is necessity to algorithmically measure the

similarity between two strings comprising of symbols

from alphabet in finite series [3]. For instance, identi-

fying automatically the confusion between names of

two drugs, it will be helpful to know that measure of

similarity between Tarodol and Tagredol is higher

than the similarity between Tarodol and Indarel. The

problem of measuring the similarity between strings

of a document occurs in different fields, which in-

clude speech recognition, bioinformatics, machine

translation information retrieval, lexicography, and

dialectology [3]. An issue related to computing the

measure of similarity between texts as strings of

words has been studied also.

Clustering has been a useful and important method

that organizes automatically collection huge number

of data objects into much smaller number of logical

groups [3, 4]. For an example having an efficient

document clustering, deciding appropriately the simi-

larity measure to use has been proven to be a signifi-

cant part of the clustering approach for some time

now and also an interesting problem to research as

well [2]. This is becoming more interesting even and

demanding with World Wide Web development and

the evolution of the Web 2.0. For instance, every

results returned by the search engines are clustered to

help focus the users search to relevant set of results.

Many online stores customers have clusters such as

the Amazon.com, to help provide recommendations

collaboratively. In collaborative tagging and book-

marking, users of same clusters have same traits us-

ing their annotation for identification.

Document clustering in general groups documents

with high similarity forming logical cluster, while

documents with high dissimilarity are separated into

different clusters. Though, the similarity definition of

documents being similar or different has not always

been clear and normally possess some variations with

the actual setting of the problem [1]. For instance, to

cluster research papers they are only regarded as sim-

ilar if their thematic topics can be shared between

them. Deploying clustering on the web sites, the in-

mailto:rajesh.prasad@aun.edu.ng

terested aspect is the clustering of the component

pages according to the information type presented in

the page. For example, dealing with university web

sites, we may wish to separate between students and

professors home pages, and research pages from

courses pages. This clustering can cause more benefit

analyzing further and dataset utilization such as re-

trieval of information and extraction of information,

by similar types of information source grouped to-

gether.

Accuracy in clustering requires that closeness be-

tween pair of objects been defined precisely, in either

pair wised or distance terms. So many similarity or

distance measures have been proposed and applied

widely, such as the Jaccard coefficient similarity and

cosine similarity. In the meantime, similarity is most-

ly looked at in terms of dissimilarity or distance as

well [5]. Pair wise distance calculation has been done

using measure such as Euclidean distance or relative

entropy and others [6]. The diversity of distance and

similarity measures available for clustering docu-

ments, their effectiveness in any type of document

clustering is still a challenge and not clear, although

Akinwale et al. compared the effectiveness of some

measures, but just focus on the n-gram measures ba-

sically and has not really discuss the basis of their

existence [7].

In general, distance measure can be categorized in-

to six (6) dimensions namely: Edit-based, Token-

based, Hybrid, Structural (Domain-dependent), Pho-

netic, and Numeric [8, 9]. In this paper, we presented

a systematic comparison of the various similarity

measures on large text collection. The performances

of the similarity measures based on the above six

dimensions on various data sets are also analyzed.

The strengths, weaknesses, space and time complexi-

ties of the above similarity measures are also pre-

sented. An experiment on R programming environ-

ment has been conducted on different dataset to de-

cide on the applicability of different similarity

measures.

Rest of the paper is organized as follows. Section

2 presents how important similarity measure is in

clustering of text document and successful areas of

application. Section 3 and Section 4 described the

edit-based and the token-based similarity measures in

details with solved problems for better demonstra-

tions. Section 5 described other similarity measures

in brief. Section 6 presents the results analysis, while

Section 7 concludes the paper.

2. Similarity Measure and Its Importance

Generally text document files are unstructured

which makes them not appropriate for regular data-

bases. These documents contain various types of in-

formation, which understanding them automatically

by direct clustering algorithms is very difficult [10].

Therefore, this unstructured terms in the documents

should be converted to a format that is suitable to

conduct some operations on them [4]. Mining useful

information and pertinent data from variety of textu-

al/ other types of document sources involves many

kind activities, also extracting important knowledge

from large data requires scalable analytics and intel-

ligence services, techniques and good applications [2,

11] . However, little value has always been found in

the extracted data in its row formats. Severally, web

search have been confused with text mining. As

much as they both result in data acquisition, the input

has large gap. Users are dedicated towards specific

data acquiring in web search, which mostly may en-

tails specified and/ known data search [5, 8]. Many

spell checking techniques have been discussed in the

past without clearly stating their class based, some

which are [9]: similarity keys, rule based techniques,

n-gram based technique, neural network, and proba-

bilistic techniques. The dimension reduction has been

an significant preprocessing stage in the text group-

ing for analysis of the dimensions reduction for fea-

tures space by removing the uninformative features

[10].

Essentially some models for similarity measures

are based on probability approach one of such is the

n-gram, while other measures are not based on prob-

ability, but accurate measures [7]. These measures

have been successfully apply in a wide variety of

domains and problems such as compression of text,

detection of spelling error and correction [12, 13].

Optical character recognition, retrieval of infor-

mation [11, 12, 14], categorization of text automati-

cally, representation of music, handwriting recogni-

tion and speech [15, 16]. Other domains that are use-

ful include immunology computation, whole-genome

protein sequence analysis [17]. Attribution of author-

ship, identification of language, tree reconstruction of

phylogenetic, integration of data, cleaning and filter-

ing, English language prediction [18], algorithms for

phonetic matching, and retrieval text [19].

An example is the general string searching which

has been done by some of the similarity measures

such as n-grams [20], while others has been applied

in some other are used for computer viruses detection

[21]. Many of these methods have been proven to be

important in various tasks ranging from two texts

comparisons to the level of quantification of the ho-

mology degree in the sequence. Problems in different

research areas such computer science, biology, and

operational research, etc. have applied some of the

similarity measures without given specific concerns

to the base of the similarity measures. Some token

based measures have been used to grade text in

mathematics [7]. Plagiarized text have been deter-

mined using some of these similarity measures (to-

ken-based) from a pool of METER corpus [19,20, 21,

22]. All research on the various similarity measures

application have indicated that there is so much need

for more research in making decisions on what type

of similarity measure is best and the type of data set

[7] .

Clustering a dataset is highly dependent on the

similarity measures. The similarity measures indicate

the level of nearness or severance between the data

items, and this should be common to the characteris-

tics of the clusters of the data item which distin-

guished them with all other clusters [23]. Severally

these characteristics depend on either data or context

of the problem present, there is no distance measure

which have been separately agreed universally to be

the best for all types of problems in clustering. Fur-

thermore, to choose appropriately the similarity

measure to use is a very paramount for the analysis

of cluster, more especially for some unique kinds of

clustering algorithms. Taking for example the clus-

tering algorithms that are density-based, such as the

DBScan [1], heavily depend on the computation of

the similarity. Clusters are found to be as dense areas

in data set using the density-based clustering, and the

projected closeness of the matching data object to its

adjacent objects is in turn the same as that of the giv-

en point. Noting that similarity/distance value is

quantified by the closeness, it is clear that finding

dense areas and projected clusters assignment of any

new data object is dependent on the largeness of the

similarity/distance computations. Therefore having a

good understanding of the efficiency of the various

measures is of enormous significance in choosing the

best one.

Generally, distance/similarity measures indicates

the similarity or the distance that exist between two

distinct objects symbolic description into a numeric

value, and this depends majorly on two factors- the

two objects properties and their measures. In order to

make the objective of this work clear we have con-

ducted the review with some solve examples on some

data set and the advantages and disadvantages of the

similarity measures is also stated. These measures

discussed below, different measures not only in dis-

tinct concluding representations, but also subject dis-

tinct requirements for the same clustering algorithm.

Characteristics of distance measure are defined by

the following metric:

Metric

Several distance measures exist but not all have

been qualify to be a metric. There are generally four

conditions that must be satisfied by any measure d to

be qualified as a metric [1].

Let d(a, b) be the measure between any two ob-

jects a and b in a set.

1. The measure between any two separate points

must be non negative, that is, d(a, b) ≥ 0.

2. The measure between two separate objects

must be zero if and only if the objects are identical,

that is, d(a, b) = 0 for all a = b.

3. Distance measure must be symmetric, that is,

distance from a to b should be same as distance from

b to a, i.e. d(a, b) = d(b, a).

4. The distance measure must satisfy the inequality

of triangle, which is d(a, c) ≤ d(a, b) + d(b, c)

3. Token-Based Similarity Measures

3.1. Cosine Similarity

Documents are mostly represented as a vector

where each attribute is representing the frequency

with which a particular term in a document occurs.

The term vector representation of documents is used

to find the similarity between the two corresponding

documents and this show the correlation between the

vectors. This is term as the cosine of the angles be-

tween two vectors, which is the so called Cosine sim-

ilarity. This is one of the distance measure mostly

apply in the clustering of text documents, such in

retrieval of information applications [7] and cluster-

ing also [24].

Given two documents a and b, the cosine similarity

between them can be defined using the following

formula:

 ,

Where ai and bi are vectors of m-dimensions over

the document set a and b, i = 1, 2, 3, . . .,N. Each di-

mension of the document is a non negative. The co-

sine similarity is a non-negative value as a result and

it’s bounded between [0, 1].

The Cosine similarity has an important property

which is its independence on the length of the docu-

ment. For an example when you want to combine

two documents of identical copies of a document a to

have a new document a’, 1 will be the Cosine simi-

larity between a and a’, this mean that the two docu-

ments are identical. For now given other document l,

a, a’ the similarity measure will be same with the

value l, which means that sim (a, l)=sim(a’, l). These

mean that, documents that are having the same ele-

ments but differently in total are identically treated.

This does not satisfy the metric second condition

above; this is because after the whole combination

the copies, the object will be different from the origi-

nal document. Though, in practice, when normalizing

two vector terms to a unit length such as 1, as in this

case is the same for both a and a’. Example 1 given

below illustrates this distance measure.

Example 1: Find the cosine similarity between the

two documents a = “Desmond” and b = “Diamonds”

Step 1: Term Frequency (TF)

D, e, s, m, o, n, d = 2, 1, 1, 1, 1, 1

D, i, a, m, o, n, d, s = 2, 1, 1, 1, 1, 1, 1

Normalized Term Frequency of a and b

Using the formula NTF =

D = 2/7 = 0.285, e = 0.143, s = 0.143, m = 0.143, o =

0.143, n = 0.143 and

D = 2/8 = 0.25, i = 0125, a = 0125, m = 0125, o =

0125, n = 0125, s = 0125

Step 2: Inverse Document Frequency (TDF)

Using the formula IDF = 1 + loge

D = 1 + 1 + loge

 = 1 + 0 = 1, e = 1.6931, s = 1, m =

1, o = 1, n = 1, a =1.6931, i = 1.6931

Step 3: Term Frequency (TF) * Inverse Document

Frequency (TDF) for a and b

D = 0.143 * 1, e = 0.242, s = 0.143, m = 0.143, o =

0.143, n = 0.143 and

D = 0.25, i = 0.211, a = 0.211, m = 0.125, o = 0.125,

n = 0.125, s = 0.125

Step 4: Vector Space Model – Cosine similarity

SIMCos (a, b) =

Dot product (a, b) = (0.285 * 0.25) + (0.242 * 0) +

(0.143 * 0.125) + (0.143 * 0.125) + (0.143 * 0.125) +

(0.143 * 0.125) + (0.2116 * 0) + (0.2116 * 0) =

0.1428

|| a || = ((0.285)
2
 +(0.242)

2
+ (0.143)

2
+ (0.143)

2
+

(0.143)
2
+ (0.143)

2
)

0.5
= (0.2215)

0.5
 = 0.4707

|| b || = ((0.25)
2
 +(0.2116)

2
+ (0.2116)

2
+ (0.125)

2
+

(0.125)
2
+ (0.125)

2
)

0.5
= (0.1519)

0.5
 = 0.3897

|| a || * || b || = 0.4707 * 0.3897 = 0.1834

SIMCos (a, b) =

 = 0.7781

Advantages

It’s very simple; the relevancy of tokens is better

reflected. It’s evaluation is very efficient. It is less

sensitive towards swaps and gives value between [0,

1].

Disadvantages

Typographic errors between tokens are penalized, for

example the similarity between ‘sean bay’ and

‘shown boy’ will be zero. The difference in ratings

given to the items by various users is not taken into

consideration in the computation.

3.2. Jaccard Coefficient Similarity

Jaccard coefficient, has been referred to as

Tanimoto coefficient, is a similarity measure based

on dividing the intersection by the objects union.

Also it is applicable mostly in text clustering.

Tanimoto coefficient uses a comparison between

shared terms sum up the weight to the terms weight

present in any of the document but not a shared terms

between the two.

Given two documents ai and bi their Jaccard coef-

ficient can be determine using the following formula:

 =

The measure of the similarity of the Jaccard coef-

ficient ranges between 0 and 1. It becomes 1 if ai = bi

and 0 when both ai and bi are not having anything in

common (disjoint), where 1 and 0 means the two

objects are similar and completely dissimilar respec-

tively. The distance measure corresponding to them

is DJ = 1 - SIMJ and DJ can be use in experiments.

Example 2: Given the two words terms Jones and

Johnson, their tokens are (“Desmond, Diamonds”)

 = 4,

 = 13

SIMjacc [ai, bi] = 4/13 =0.3077

Advantages

It’s less sensitive to the word swaps, because it con-

sider only whether token exist, not its position. Its

evaluation is very efficient and is very simple to

evaluate.

Disadvantages

Typographic errors between tokens are penalized, for

example the similarity between ‘sean bay’ and

‘shown boy’ will be zero. Significance of the simi-

larity measure is penalized in case of any error.

3.3. General n-gram Similarity

This algorithm was introduced by Niewiadomski.

It measures to template string from an answer string

as represented in the following formula [7]:

SIM (a1,a2) = f(m1,m2)

Where f(m1, m2) =

 represent the

number of substring not shorter then m1 and also not

longer than m2 in a1, g(i, j) = 1 if and only if i – ele-

ment-long substring of the string a1 start from j-th

position in a1 at least appears once in the a2 else g(i, j)

= 0. If there exist a substring in other from one ar-

gument of comparison, the absolute similarity level

will be measured as 1 which is identical of a1 and a2

[7]. M(a1), M(s2) = the length of string a1 and a2, M =

max (M(a1), M(s2))

3.4. Bigram Similarity

The general n-gram measure has been used to de-

rive several other gram algorithms including the bi-

gram where n is equal to 2, therefore the formula is

as follows: SIM(a1,a2)=

3.5. Trigram Similarity

The trigram is also a special type of n-gram where

n is equal to 3, two strings a1 and a2 similarity can be

determined by the following formula:

SIM(a1, a2) =

3.6. Oddgram Similarity

This is a special type of n-gram that takes m(m-

1)/2 processing substrings before the performance is

measure. This take the n-gram matching substrings

by half for processing which still reduce running time.

The match strings for the method is denoted by a1, a2

and max(M(a1), M(a2)) = M which represent the

maximum between the two strings a1 and a2. If M is

an odd number then M =

SIM (a1, a2) =

 otherwise

3.7. Sumsquare Gram Similarity

This has it root from the n-gram measure in which

the time for processing is quadratic for all the n-gram

in the line statement query. Even though n-gram sim-

ilarity measure are easy to manage and generate, their

time and space complexity are quadratic and there-

fore good for both sumsquare gram and oddgram

since they work in quadratic. The sumsquare gram

and oddgram measure write their results in pair sub-

missions (text and pattern matching). Given pattern

and text matching i and j, aij is close to 1 only if they

are both identical and also close to 0 if they are very

different. This means that both oddgram and

sumsquare grams normalized form falls in the inter-

val [0, 1]. Likewise oddgram and sumsquare grams

measure of similarity are symmetrically expected,

meaning aij = aji will hold for all i, j. The matched

string for sumsquare denoted by a1, a2 and

max(M(a1), M(a2)) = M taking the maximum length

of the two string a1 and a2. M =
N = times to jump = M – 1

Q = first jump =

SIMsq (a1, a2) =

3.8. Set-based Trigram Similarity

This similarity measure technique is derived from

the set theory of similarity measure. This is concern

with measuring similarity in terms of number of

common trigram of two set of entities. The string

sharing of both pattern and text matching weight are

increased by three times. This is asymmetric since it

does not give consideration to (false, false) to be a

matching pattern. It is represented by the following

formula:

SBT : T(A, B) =

Examples 3: given a1 = Desmond, a2 = Diamonds.

M(a1) = 7 and M(a2) = 8, Max {M(a1); M(a2)} = 8

a2 occurs in the substring of a1 as follows:

 1-element D, m, o, n, d= 5

 2-element Dm, mo, on, nd = 4

 3-element Dmo, mon, ond = 3

 4-element Dmon, mond = 2

 5 -element Dmond = 1

1. General n-gram measure

SIM(a1, a2) =

 =

=

=0.4166

2. Bigram measure

SIM (a1, a2)=

 =

= 0.7777

3. Trigram measure

SIM (a1, a2) =

 =

=

 = 0.5000

4. Oddgram measure If M is odd then M=

 = M = even =

 = 4,

SIM (a1, a2) =

=

 =

 = 0.3500

5. Sumsquare gram measure = M = = 2

= time to jump = M – 1=2 – 1= 1 , Q = first

jump = M
2
 – (M – 1)

2
 = 2

2
 – 1

2
 =3, 1

2
 - 1

2
=

0

SIMsq (a1, a2) =

 =

 =

 = 1.0000

6. Set-based trigram measure SBT : T(a1, a2) =

 =

=

 = 0.6000

Advantages

This uses overlapping which reduces the effect of

the typographical error in the computation. It’s very

efficient and always captured automatically the most

frequent root string.

Disadvantages

Some n-grams such as sumsquare gives approxi-

mated result. It is very difficult to compute and eval-

uate. It is time consuming.

4. Edit-Based Similarity Measures

4.1. Levenshtein Similarity

This is the distance between two strings which is

based on the minimum number of operations; the

operations are insertions, deletions, and substitutions

which are required in transforming a string into the

other second string, this is also referred to as the

Levenshtein distance and it exist in two variants

which are: Optimal string alignment and Demarau-

Levenshtein. Both the algorithms can do the same

thing as Levenshtein except they can accomplish

transposition too. The difference between Optimal

String Alignment and Damerau-Levenshtein is that

Optimal String Alignment Algorithm only completes

transposition under the condition that no substring is

edited more than once whereas Damerau-Levenshtein

is not restricted by such a thing. That is also why

Optimal String Alignment is sometimes called the

Restricted Edit Distance. This aim at finding the edit

distance between two strings, together with their op-

timal transcript which describes the transformation

that take place [25]. Insertion operation: Replace

the blank by the desired character i.e a δ (, a); ~ a,

Deletion operation: Replace the desired character by

blank i.e δ (a,); a ~ , Replacement operation:

Replace the desired character by the other character

needed i.e a by b; δ (a, b); a ~ b. This algorithm com-

pute transcript base on the dynamic programming

algorithm, the principle of optimality of this algo-

rithm is that; the best overall solution must always

contain the best transcript of the two substrings. The

algorithm can be represented as follows:

 Initialize matrix M of size (|s1| + 1) × (|s2| +

1)

 Fill matrix: Mi,0 = i and M0,j = j

 Recursion: Mi,j = {
Mi-1,j-1

if x[i] = y[i] else

 1+ min (Mi –

1,j, Mi,j –1, Mi – 1, j -1)

 Distance: LevenshteinDist (x, y) = M|x|,|y|

Levenshtein Similarity: SIMLevenshtein (a1, a2) = 1 –

Example 4: Given a1 = Desmond and a2 = Dia-

monds, the Levenshtein distance = 3 the Levenshtein

similarity measure is given as:

SIMLevenshtein (a1, a2) = 1 –

 = 0.6250

Advantages

It is simple and fast. It is highly applicable on

small and big strings. It is not restricted to strings

having same length and the cost at most can be the

length of the longest string.

Disadvantages

Running Levenshtein on two long strings results in

a long time and a big cost that is proportional to the

product of the two string lengths

4.2. Needleman-Wunsh Similarity

This is also called the optimal alignment and was

introduce in 1970, the algorithm model variations

between more explicitly strings than a series of trans-

formation. This algorithm is an application of best

path strategy (Dynamic programming) used in find-

ing optimal alignment of sequence.

The basic idea behind this algorithm is from the

fact the any path that lead to an optimal path point is

also an optimal path. Hence the optimal path is a col-

lection of several sub-path, in this algorithm the op-

timal path take from the beginning to the end of both

the sequence involved, which bring about the concept

of ‘global alignment’[26]. The similarity score

alignment is computed as for example given that the

alignment between strings x and y is A, a score ma-

trix C(xi, yj) and gap penalty cg, the score of the (x, y)

given the A is the sum of the score of all matches in

the A minus the penalties for the gap. Dynamic Pro-

gramming can be applied to a large search space that

can be structured into a succession of stages such

that:

 The initial stage contains trivial so-

lutions to sub-problems

 Each partial solution in a later stage

can be calculated by recurring on

only a fixed number of partial solu-

tions in an earlier stage.

 The final stage contains the overall

solution.

This algorithm has three basic stages in the com-

putation of it similarity measure as stated below:

 Initialization

 Matrix fill or scoring

 Trace back and alignment

The computation of the Needleman-Wunsch score

is done by the following formula:

S(i, j) = max (s (i-1, j-1) + c(xi, yj), s(i-1, j) + cg –

(gap) – 1, s(i, j -1) + cg))

Initially s(0, j) = - jcg

 s(i, 0)= -icg

Example 5: One possible alignment between a=

Desmond and b = Diamonds, showing (D e s m o n d

- = D i a m o n d s). Assign score for a correspond-

ence between every pair of characters; penalizes

transformations on a case by case basis. A corre-

spondence of two identical characters may score 2; or

-1 otherwise and a gap penalty A gap of length 1 has

a penalty cg (ex: 1); a gap of length k has a penalty

k*cg, therefore 2 (for match D-D) – 1 (for match e-a)

- 1 (for match s- a) + 2 (for match m-m) + 2 (for

match o-o) + 2 (for match n-n) + 2 (for match d-d) - 1

(for gap s) = 1, 2 – 1 – 1 + 2 + 2 + 2 + 2 – 1 = 4 – 3

= 7,

SIMNw (a, b) = 1 -

 = 0.8571

Advantages

It is a fast algorithm for sequence alignment. It is

efficient. It allows different penalties for variations

between strings. It gives the global score of the string

and therefore increases the general scope. It explicit-

ly models gaps in the alignment of the two strings,

and assigns an arbitrary cost to the gap.

Disadvantages

It is slow to compute. It consumes a lot of space

and is difficult to evaluate

4.3. Jaro-Winkler Similarity

This similarity measure works on the number of

mismatch between two strings by character transposi-

tions been allowed a type of edit operation that per-

forms comparison using dynamic programming prin-

ciples [9]. The Jaro was invented in the year 1989

and it is essentially used to compare two strings a1

and a2 by common character identification among the

two strings. The characters are said to be common to

the two strings if and only if they appear in equal

positions within the two strings, this is respectively

denoted by i and j, not different from the h of the

shorter string. This is formally represented as |i - j|

0.5 × min (|a1|, |a2|). Immediately all characters com-

mon are identified, both a1 and a2 are sequentially

traversed, and determining the number t of transposi-

tions of the common characters where when i -th

common character of a1 is not equal to the i –th

common character of a2 then transposition occurs.

Give the number of transposition t set δ of common

characters, the Jaro similarity measure can be com-

puted using the following formula:

SIMJaro (a1, a2) =

Example 6: Given a1 = Desmond and a2 = Dia-

monds. Then | a1| = 7 and | a2| = 8. The maximum

distance between characters that are common is 0.5

 = 3.5. The common character set is =

{D, m, o, n, d}, where _ is the space character. None

of the matching line crosses another matching lines,

indicating that none of the common characters pro-

duces a transposition, making have t = 0. Then the

Jaro distance is as thus:

SIMJaro (a1, a2) =

 = 0.7798

This algorithm is generally performing well on

strings that have slight spelling variations. But be-

cause of the restriction on common characters have

to occur in certain distance from each other. , this

does not cope well with longer strings separating

common characters. This problem mostly occurs for

names with common prefix but one name has an ad-

ditional suffix (e.g Desmond B vs. Desmond Bala

stored as first name). This is what because the exten-

sion of this algorithm to a new modified one called

Jaro-Winkler similarity measure invented in 1991,

given consideration of two special strings a1 and a2

with a common prefix , the Jaro-Winkler similarity

can be computed with following formula:

SIMJaro-Winkler[a1, a2]=JaroSim(a1, a2)+ | |×f × (1

JaroSim(a1, a2)), where f is a constant scaling factor

of how much corrected upward based on the common

prefix of the similarity measure.

Example 7: Given a1 = Desmond and a2 = Dia-

monds, there are 5 common characters between the

two strings corresponding to the common prefix =

peter. There are no permutation of characters as

clearly indicated in so t = 0. Then the SIMJaro (a1,

a2) = 0.7798. By the assumption that the scaling

factor f = 0.1the Taro-Winkler similarity measure is:

SIMJaro-Winkler (a1, a2) = 0.7798 + 5× 0.1 ×(1 –

0.7798) = 0.8899

Advantages

It is very accurate. It is very efficient and is very

flexible to accommodate variation in strings

Disadvantages

This does not cope well with longer strings sepa-

rating common characters. It reduces the score of

similarity in case of a longer string

5. Other Similarity Measures

Some measures are mostly used for duplication de-

tection, buy none is applicable conceivable to all sce-

narios. As seen some are special for short strings and

others are for long strings with few typographical

errors while others are insensitive to word swaps [9].

There is need to introduce some other special cases

similarity measures i.e phonetic, numeric, structural,

hybrid similarities respectively.

5.1. Phonetic Similarity

This is a similarity measure that focuses spoken

words sounds, which might be very similar despite

the large differences in the spelling. For example, the

two strings Czech and Cheque are not very similar,

but however they are hardly distinguishable phoneti-

cally. Hence they are said to have a large phonetic

similarity.

A very common phonetic coding scheme is known

as Soundex, and the computational idea of the pho-

netic similarity is first transforming strings(or tokens)

into their various phonetic representation and the

similarity measure is then applied on the strings or

tokens on Soundex representation [9].

5.2. Numeric Similarity

This is the similarity measure applied to numeric

data. Normally, numbers are considered as strings,

that yields unsatisfactory results, for example when

comparing 1999 and 2000. The measure of the dif-

ference between the two numbers compared is a solu-

tion, i.e [1999-2000]. Though in different domains,

there are different meanings to difference in numbers.

For example, a microscopic scale difference meas-

urement, a 1mm is a very large difference, but on

macroscopic it is almost nothing. A “normalize” way

possible is taking the distribution of values in the

domain into account [9].

5.3. Structural Similarity

This similarity measure takes the structure of the

data into consideration, with no just focus on the con-

tent as seen in the other similarity measures. Though,

putting the structure into consideration may be of

great relevant, e.g when comparing XML data trees.

The widely used similarity measure is the trees edit

distance and the variation thereof [9]. Importantly,

the tree edit distance is also an edit-based measure of

similarity (such as levenshtein distance), but does not

edit operations on characters except on all the strings

or token structure.

5.4. Hybrid Similarity

This similarity measure is combining both the to-

kenization and string similarity score. This algorithm

is referred to as hybrid because of the feature of both

tokenization and string similarity combination. The

extended Jaccard similarity, and Monge-Elkan simi-

larity are types of this similarity measure, because

they includes similar tokens in set of overlapping

descriptive data [9].

6. Result and Conclusion

6.1. Result

Table 1 below show the comparison of the similar-

ity measures based on some properties. As it is indi-

cated in the table below Needleman-Wunsh and the

Jaro-Winkler measures are having worst complexities

in both time and space with high space consumption

and low overall performance. The n-gram has the

second highest complexity both in time and space,

but having moderate use memory in execution. On

average the Jaccard and Cosine have similar com-

plexity in time and space with low consumption of

memory and high performances rate.

6.2. Conclusion

This paper presents a rigorous theoretical review

on the various similarity measures used in clustering

the huge dataset. Similarity measure provides the

level to which documents are near or far from each

other. From the study conducted, it is shown that the

most of edit-based similarity measures have higher

complexities in both time and space than token-based,

as a result of these complexities the memory con-

sumption of the edit-based measures are higher than

the token-based. From the study conducted its clearly

shown that Levenshtein, Needleman, and Jaro

measures are applied in mainly text documents, while

the cosine, Jaccard, are applied mainly in documents

collection, and the n-grams measures are for both text

and document datasets. Also it is recommended from

the study the token-based similarity measures are

applied in clustering huge document of different kind,

and the edit-based are applied to text documents in

specific.

References

1. A. Huang, Similarity measures for text document cluster-

ing, In proceedings of the sixth new zealand computer
science research student conference (NZCSRSC2008),

Christchurch, New Zealand, pp. 49–56, Apr., 2008.

2. V. Medvedev, O. Kurasova, J. Bernatavičienė, P. Trei-
gys, V. Marcinkevičius, and G. Dzemyda, A new web-

based solution for modelling data mining processes.

Simul. Model. Pract. Theory., vol. 12, no. 1, pp. 53-60,
Mar., 2017.

3. G. Kondrak, N-gram similarity and distance. In Interna-

tional Symposium On String Processing and Information
Retrieval, pp. 115–126, 2005.

4. S. N. Bharath Bhushan and A. Danti, Classification of

text documents based on score level fusion approach.

Pattern Recognit. Lett., vol. 94, no. 3 pp. 118-126, Jul.,

2017.

5. H. Hashimi, A. Hafez, and H. Mathkour, Selection crite-
ria for text mining approaches. Comput. Hum. Behav.,

vol. 51, pp. 729–733, Mar., 2015.

6. S. A. Shehab, A. Keshk, and H. Mahgoub, Fast dynamic
algorithm for sequence alignment based on bioinformat-

ics. Proc. Int. J. Comput. Appl., vol. 8, no. 7, pp. 0975-

8887, 2012.

7. A. Akinwale and A. Niewiadomski, Efficient similarity
measures for texts matching, J. Appl. Comput. Sci., vol.

23, no. 1, pp. 7–28, 2015.

8. F. Naumann, Similarity measures, Inf. Syst., vol. 38, no.
6, pp. 887-907, Sep., 2013.

9. F. Naumann and M. Herschel, An introduction to dupli-

cate detection. Morgan & Claypool Publishers, 2010.
10. L. M. Abualigah, A. T. Khader, M. A. Al-Betar, and O.

A. Alomari, Text feature selection with a robust weight

scheme and dynamic dimension reduction to text docu-
ment clustering, Expert Syst. Appl., vol. 84, pp. 24–36,

Oct., 2017.

11. D.W. Kim, Book review, Comput. Sci. Rev., vol. 5, no.
2, pp. 163–203, May, 2011.

12. S. Kaur and Prof. Kiranjyoti, Mining text using leven-

shtein distance in hierarchical cluetering.pdf, Int. J.
Comput. Tech., vol. 2, no. 1, pp. 15, 2015.

13. A. Akinwale and A. Niewiadomski, “Effective similarity

measures in electronic testing at programming lan-
guages,” Journal of Applied Computer Science, vol. 20,

no. 2, pp. 7-20, 2012.

14. E. Ménard and M. Smithglass, “Digital image descrip-
tion: a review of best practices in cultural institutions,”

Libr. Hi Tech., vol. 30, no. 2, pp. 291–309, 2012.
15. V. Hollink, J. Kamps, C. Monz, and M. De Rijke, Mono-

lingual document retrieval for European languages, Inf.

Retr., vol. 7, no. 1, pp. 33–52, 2004.
16. W. B. Cavnar, J. M. Trenkle, and others, N-gram-based

text categorization, Ann Arbor MI, vol. 48113, no. 2, pp.

161–175, 1994.
17. S. Mohamed, D. Rubin, and T. Marwala, Multi-class

protein sequence classification using fuzzy ARTMAP,

Systems, Man and Cybernetics, SMC '06. IEEE Interna-
tional Conference on, vol. 2, pp. 1676–1681, Oct., 2006.

18. J. Xu et al., Self-Taught convolutional neural networks

for short text clustering, Neural Netw., vol. 88, pp. 22–

31, Apr., 2017.
19. G. E. Kopec, M. R. Said, and K. Popat, N-gram language

models for document image decoding, in Proceedings of

the IS&T/SPIE 14th Annual Electronic Imaging Sympo-
sium, Vol. 4670, pp. 191–202, Jan., 2002.

20. C. Mayers and D. L. Whiting, Data compression appara-

tus and method using matching string searching and
Huffman encoding. Google Patents, Jul., 1996.

21. T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Swei-

dan, Detection of New Malicious Code Using N-grams
Signatures, in PST, vol. 2, pp. 41-42, Sep., 2004.

22. A. Barrón-Cedeño and P. Rosso, On automatic plagia-

rism detection based on n-grams comparison, in Euro-
pean Journal of Information Retrieval Research, vol. 6,

no. 4, pp. 51–73, Apr., 2009.

23. A. Barrón-Cedeño, M. Potthas, P. Rosso, B. Stein, and
A. Eiselt, Corpus and evaluation measures for automatic

plagiarism de tection, in Department of Information Sys-

tems and Computation, research, lrec, 2010.
24. Y. Cao, P. Zhang, J. Guo, and L. Guo, Mining large-

scale event knowledge from web text, Procedia Comput.

Sci., vol. 29, pp. 478–487, 2014.
25. S. Dana, S. James, Large Edit distance with multiple

block operations, International Symposium on String
Processing and Information Retrieval, vol. 28, no 57, pp.

369-377, 2003.

26. C. Kacfah Emani, N. Cullot, and C. Nicolle, “Under-
standable Big Data: A survey,” Comput. Sci. Rev., vol.

17, pp. 70–81, Aug., 2015.

27. C. Peter, A comparison of personal name matching:
techniques and practical issues, The Australian National

University, Joint Computer Science Technical Report

Series Department of Computer Science Faculty of En-
gineering and Information Technology Computer Sci-

ences Laboratory Research School of Information Sci-

ences and Engineering, Sep.2006.

Table 1: Comparison of the various similarity measures

S/

no

Measur

es/ Prop-

erties

Time

Complexity

Space

Complexity

Cate-

gory of

Measure

Based

Memory

Space Con-

sumption

General

Performance

Rating

Refer-

ence

Type

of data

1 Cosine O(n) O(n) To-

ken-based

Low High [7,24] Docu-

ments

2 Jaccard On(1) On(1) To-
ken-based

Low High [22] Docu-
ments

3 n-gram O(mn) O(m3) To-

ken-based

Moderate Moderate [7] Docu-

ments and
text

4 Levens

htein

O(|m| .

|n|)

O(min(|

m|, |n|))

Edit-

based

Low High [25] Text

5 Needle

man-

Wunsh

O(mn)

quadratic

O(mn)

quadratic

Edit-

based

High Low [6,26] Text

6 Jaro-

Winkler

O(|m| +

|n|) quadrat-

ic

O(|m| +

|n|) quadrat-

ic

Edit-

based

High Low [6,9] Text

m= Number of terms / characters, n= Size of the data set/ document

https://link.springer.com/conference/spire
https://link.springer.com/conference/spire

