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Abstract
This study focuses on forecasting the demand for components used in repair services within supply chain management.
Accurate demand forecasting is crucial for avoiding stockouts and excessive inventory costs. One of the main
challenges of this study is the scarcity of available data for many components, which made it difficult to build and
evaluate effective predictive models. To overcome this limitation, the strategy of grouping interchangeable components
was adopted, allowing the analysis of aggregated data for items used interchangeably in repair services. This study
used historical data on warranty stock, placements, and the Consumption Index (IDC) for approximately 3,000
subgroups of electronic components. Classical time series techniques, including the Simple Moving Average (SMA)
and Exponential Moving Average (EMA), are utilized alongside more advanced models, which encompass various
implementation packages for SARIMAX models. Performance analysis was conducted using the Root Mean Square
Error (RMSE) and Sufficiency metrics.
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Introduction
Companies in the electronics and microcomputers sector
manufacture and distribute a diverse range of products,
including computers, peripherals, and mobile devices,
all while navigating a highly competitive and dynamic
environment. A significant challenge these companies face
is managing the demand for components in technical service
centers, particularly in fulfilling Service Level Agreements
(SLAs) for repairing products that develop defects during
the warranty period. Meeting these SLAs is crucial, as
they establish clear expectations regarding response times,
resolution deadlines, and the availability of necessary parts.

The logistics of ensuring that service centers have the right
materials in the appropriate quantities and at the right time
are complex. Accurate demand forecasting is essential for
optimizing inventory management and ensuring that service
centers are adequately stocked. Inadequate forecasting can
lead to stockouts, resulting in service delays and customer
dissatisfaction. This dissatisfaction can directly impact a
company’s reputation and lead to lost customers. Conversely,
excess inventory incurs unnecessary costs and resource
waste, negatively affecting profitability. Companies that
struggle to balance supply and demand face high storage
costs and risks of product obsolescence.

Demand for repair parts often exhibits seasonal fluc-
tuations influenced by factors such as weather changes,
new product launches, and shifts in consumer behavior.
These variations complicate demand forecasting, necessi-
tating robust predictive models that can effectively capture
these dynamics.

Despite the challenges, there is limited research specif-
ically addressing the demand for components in technical
assistance companies, although related fields have been
explored extensively (1; 2; 3). For instance, Mahin et. al.

(2025) presented an innovative approach to sales prediction
through advanced machine learning methods, highlighting
the effectiveness of the Voting Regressor in improving fore-
casting accuracy and optimizing supply chain operations
(4). Similarly, Espinel et al. (2025) explored the integration
of econometric modeling and deep learning strategies to
improve forecasting accuracy within the pharmaceutical sup-
ply chain, ultimately benefiting patient care and operational
efficiency (5). Andrianakis (2024) et. al. developed and
implemented PredictionSCMS, an integrated supply chain
management system designed to optimize product flow,
prevent sales losses due to stock shortages, and enhance
resource efficiency through inventory management and sup-
ply chain automation (6).

This paper offers a comprehensive analysis of various
predictive models for forecasting the replacement of parts
in technical assistance for electronic components, drawing
insights from supply chain literature across different sectors.
The research systematically compares the performance
of diverse approaches across various forecast horizons
and component life-cycle stages. It evaluates a broad
spectrum of algorithms, ranging from traditional methods
such as Simple Moving Average (SMA) and Exponential
Moving Average (EMA) to advanced techniques like auto-
optimizable SARIMAX algorithm. The primary objective of
the study is to identify the most accurate and efficient models
for demand forecasting within the context of technical
assistance in the electronics industry, thereby optimizing
inventory management and enhancing customer service. The
findings demonstrate how advanced forecasting techniques,
real-time data utilization, and proactive risk management
can significantly enhance supply chain operations, agility,
and competitiveness. Furthermore, the paper underscores the
critical importance of collaboration across the supply chain,
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emphasizing that information sharing among stakeholders
can lead to improved decision-making and increased
resilience. Overall, this multifaceted approach not only
streamlines operations but also bolsters the agility and
competitiveness of the supply chain, providing valuable
insights into the field of supply chain management.

Material and methods

Database
One of the primary challenges faced in this study was the
limited availability of data for many individual components,
which significantly hindered the effective development and
evaluation of predictive models. In numerous instances,
historical demand records were inadequate for conducting a
robust analysis. To address this limitation, the study adopted
the concept of component subgroups or interchangeable
components. Interchangeability refers to the characteristic
of components and sub-assemblies used in modern
manufactured products, where each unit produced is
designed to be identical to every other unit. The fundamental
principle is that all units must conform to design
specifications within a narrowly defined allowable range
of variation. These specifications typically encompass all
characteristics of the component that are relevant to the
manufacturing process and the customer’s requirements,
ensuring consistency and reliability in production (7).

This approach facilitated the development of predictive
models using aggregated data from subgroups with
similar usage characteristics. A dedicated engineering
technical team was responsible for identifying and grouping
interchangeable components, ensuring that the subgroups
accurately reflected the relationships among the parts. By
combining information from various components, it was
possible to create a comprehensive database comprising
the replacements usage history of technical assistance for
over 3,000 component subgroups. This strategy not only
alleviated issues related to data scarcity but also provided
valuable insights into consumption patterns across related
component groups, allowing for more precise adjustments in
parts supply planning strategies.

For each interchangeable subgroup, monthly historical
data was available regarding the number of components
under warranty (warranty), the number of items that
were considered damaged and were replaced in technical
assistance (replacements), and the Replacements Index
(RI) provided by 100 ∗ replacements/warranty.

Pre-processing
Before training the predictive models, time series data
normalization is performed. This step is crucial because if
the values in the dataset are on different scales, it can result
in a model with suboptimal performance, as certain features
may disproportionately influence the training process (8).

Min-Max Scaler The Min-Max Scaler is a pre-processing
technique used to scale features to a fixed range, typically
between 0 and 1. This is particularly useful in machine
learning algorithms that are sensitive to the scale of
the data, such as gradient descent-based algorithms. The
transformation is defined mathematically as follows:

X ′ =
X −Xmin

Xmax −Xmin
(1)

Where:

• X is the original feature value.
• Xmin is the minimum value of the feature in the

training set.
• Xmax is the maximum value of the feature in the

training set.

Standard Scaler The Standard Scaler is a pre-processing
technique that standardizes features by removing the mean
and scaling to unit variance. This is particularly useful for
algorithms that assume the data is normally distributed, such
as Support Vector Machines and Logistic Regression. The
transformation is defined mathematically as follows:

X ′ =
X −

−
X

σ
(2)

where X is the original value,
−
X denotes the mean of

the variable, and σ signifies the standard deviation of the
variable.

The pre-processing techniques employed in this paper
were based on the default configurations provided by the
scikit-learn library in Python.

Prediction models
Zeroes forecast For zero forecasts, all predictions are set to
zero. This type of prediction serves as a crucial baseline for
comparison with other methods, allowing for the evaluation
of the impact of not taking any action in anticipating
technical assistance needs.

Naive forecast For naive forecasts, all predictions are set to
the value of the last observation in the training set (9). The
naive model was developed using historical data from the
Replacements Index (RI). The predicted RI values were then
multiplied by the warranty data to estimate the number of
replacements at technical assistance.

Random Walk The random walk model is a statistical
forecasting approach that posits that future values in a time
series are equal to the most recent observed value plus a
random error term. This assumption suggests that future
movements are inherently unpredictable and have an equal
probability of increasing or decreasing. Consequently, the
random walk model serves as the foundation for naive
forecasts (9). It can be expressed as:

ŷT+1 = yT + ϵT , (3)

where ŷT+1 is the forecast, yt is the last observed value,
and ϵT is random noise.

The random walk model was developed using historical
data from the Replacements Index (RI). The predicted RI
values were then multiplied by the warranty data to estimate
the number of replacements at technical assistance.

The Random Walk algorithms implemented in this paper
were based on the default configurations provided by the
Python library StatsForecast.
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Simple Moving Average (SMA) The Simple Moving
Average (SMA) is a statistical method employed in time
series analysis and forecasting. It calculates the average of
a selected set of data points over a specified period. In this
approach, each data point in the time series is given equal
weight, meaning that no weighting factors are applied to any
of the observations (10). It can be expressed as:

SMAt =
Yt−1 + Yt−2 + · · ·+ Yt−n

n
, (4)

where SMAt is a simple Moving Average forecast for
observation t, Yt denotes the data point at observation t, and
n indicates the number of observations within the moving
window.

The SMA model was developed using historical data from
the Replacements Index (RI). The predicted RI values were
then multiplied by the warranty data to estimate the number
of replacements at technical assistance.

The SMA algorithms implemented in this paper were
based on the default configurations provided by the Python
library Pandas.

The Exponential Moving Average (EMA) The Exponential
Moving Average (EMA) is a variant of the moving average
that gives greater weight to more recent data points, making
it more responsive to new information compared to the
Simple Moving Average (SMA). Unlike traditional moving
averages, the EMA is mathematically defined as a limit
of an exponential average with a specific weighting factor
(11). The weights assigned to older data points decrease
exponentially, ensuring that they never reach zero. It can be
expressed as:

EMAt =
ΛYt−1 + Λ2Yt−2 + · · ·+ ΛnYt−n

Λ + Λ2 + · · ·+ Λn
, (5)

where EMAt denotes the Exponential Moving Average
forecast for observation t, Yt denotes the data point at
observation t, n indicates the number of observations within
the moving window, Λ = (1− α), and α represents the
degree of weighting decrease, a constant smoothing factor
between 0 and 1.

The EMA model was developed using historical data from
the Replacements Index (RI). The predicted RI values were
then multiplied by the warranty data to estimate the number
of replacements at technical assistance.

The EMA algorithms implemented in this paper were
based on the default configurations provided by the Python
library Pandas.

Seasonal AutoRegressive Integrated Moving
Average with Exogenous Variables - SARIMAX
Another well-established statistical algorithm available is
the SARIMAX model (12). SARIMAX, which stands for
Seasonal AutoRegressive Integrated Moving Average with
Exogenous Variables, is a statistical model used for time
series forecasting that integrates several key components:
seasonality (S), which captures seasonal patterns in the
data; auto-regression (AR), which utilizes past values to
predict future outcomes; differencing (I), which eliminates
trends to achieve stationarity; moving averages (MA), which

leverage past forecast errors to enhance predictions; and
external variables (X) that can help explain the primary
behavior of the time series. The model is typically denoted
as SARIMAX(p, d, q)(P, D, Q, M), where p, d, and q
represent the orders of the respective components (12).
The parameter p denotes the order of the autoregressive
component, specifying the number of past values utilized in
the model. d represents the degree of differencing applied
to achieve stationarity in the time series. The parameter
q indicates the order of the moving average component.
D denotes the number of seasonal differences required to
achieve stationarity in the seasonal component of the time
series, similar to d, which helps eliminate seasonal trends.
Q refers to the number of seasonal moving average terms,
representing the number of lagged forecast errors from the
seasonal period included in the model. Finally, M indicates
the number of periods within each season.

The SARIMAX model was developed using historical
data from the monthly replacements as the primary
forecasting variable, while monthly warranty data was
incorporated as an exogenous variable.

The SARIMAX algorithms discussed in this paper were
developed using the default configurations from the Python
libraries pmdarima and StatsForecast, with a focus
on yearly seasonality. The parameters p, d, q, P, D, Q, and M
for the SARIMAX model were automatically selected using
the autoarima functions available in both libraries.

Metrics
The evaluation of predictive models’ quality is essential to
ensure accuracy and effectiveness in predictions, especially
in contexts where data-driven decisions have a significant
impact. The Root Mean Square Error (RMSE) and
Sufficiency metrics were used to measure the performance
of the developed predictive models.

Root Mean Square Error (RMSE) RMSE was chosen due
to its capacity to penalize larger errors more severely. This
characteristic is particularly important in the current problem
domain, where significant deviations can result in substantial
disruptions to inventory planning. Consequently, RMSE was
favored over other metrics such as MAE (Mean Absolute
Error), MASE (Mean Absolute Scaled Error), and MAPE
(Mean Absolute Percentage Error). RMSE quantifies the
difference between the values predicted by the model and the
actual observed values, providing a clear indication of how
well the model is performing in forecasting the data. One
of the advantages of RMSE is that its value is expressed in
the same units as the variable of interest, which facilitates
the interpretation of results and allows for a more intuitive
assessment of the model’s performance. A lower RMSE
indicates that the model performs better, as the predicted
values are closer to the actual values (13). The RMSE is
calculated as follows:

RMSE =

√∑n
i=1(yi − ỹi)2

n
, (6)

where yi is the real value of the observation i, ỹi is the
predicted value of the observation i, and n is the total number
of observations.
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Sufficiency The Sufficiency Metric is an important tool for
evaluating the quality of predictive models, especially in
contexts where meeting Service Level Agreements (SLAs)
is critical. It is defined as the proportion of predictions that
meet or exceed the actual demand value. In other words,
if a predictive model forecasts a demand of 100 units and
the actual demand is 90 units, that prediction is considered
sufficient. Sufficiency can be expressed as the ratio between
the number of sufficient predictions and the total number of
predictions, multiplied by 100.

This metric helps assess the model’s effectiveness in
predicting values that meet demand, making it crucial for
operations that rely on service levels. Models with high
sufficiency are preferable, as underestimating demand can
lead to financial losses or customer dissatisfaction. It is
important to use sufficiency alongside other performance
metrics, such as RMSE, for a more comprehensive
evaluation. Sufficiency is calculated as follows:

S =
Ns

Nt
× 100, (7)

where Ns is the number of forecasts that meet or exceed
the actual demand value, and Nt is the total number of
predictions.

Results
The results presented in this section reflect the overall
performance of the forecasting models derived from
approximately 3,000 analyzed subgroups, each with its own
model. This extensive array of models enables a thorough
evaluation of the effectiveness of the employed approaches,
offering valuable insights into the efficacy of each method
in addressing the demand forecasting problem. Additionally,
it highlights the predictive capabilities and robustness of the
various algorithms used.

Figure 1 illustrates the RMSE results for the algorithms
evaluated in forecasting the demand for electronic com-
ponents over a six-month period. The robustness of these
approaches was assessed by simulating the models’ effec-
tiveness across different time frames, spanning from July
2021 to October 2024. This extended evaluation is crucial
for validating the reliability of the algorithms, ensuring that
the results remain applicable and relevant over time.

Figure 2 presents box-plots displaying the aggregated
RMSE values from the experiments for each evaluated
method, highlighting the mean (×), median (—), and the
25% (Q1) and 75% (Q3) quartiles. Additionally, the box-
plots mark outliers—values that lie significantly outside the
data distribution, as determined by the inter-quartile range
(IQR = Q3−Q1). The lower limit is defined as Q1 minus
1.5 times the IQR, while the upper limit is Q3 plus 1.5 times
the IQR. Values that fall outside these limits are considered
outliers and are represented in the box-plot as individual
points (•). This graphical representation allows for a clear
visual analysis of the dispersion and central tendency of
the results, facilitating comparisons between the different
forecasting methods.

Based on Figures 1 and 2, it can be observed that simpler
methods such as zero forecasting, naive forecasting, and
random walk exhibit relatively high RMSE values, mostly

ranging between 4.5 and 12. This indicates that these
methods, which do not account for historical patterns or
data complexities, perform poorly in demand forecasting,
reflecting their limitations in capturing the real dynamics of
the problem. This outcome is anticipated, as these algorithms
are commonly employed as performance baselines that more
advanced methods should aim to exceed.

The SMA and EMA algorithms demonstrated relatively
lower RMSE values compared to the reference methods,
indicating that, despite their simplicity and lack of
optimization, these approaches still contribute to the
planning process. The RMSE results for these techniques
were observed to range predominantly between 3.0 and
5.5, demonstrating their effectiveness in smoothing short-
term fluctuations and identifying general trends. However,
the nature of these approaches may make them less
sensitive to abrupt demand changes, which limits their
ability to capture relevant trends and seasonality in the
business context. This limitation can be a disadvantage
in scenarios where demand is volatile or seasonal, as
the inability to quickly react to these variations may
result in inaccurate forecasts and, consequently, inventory
management challenges. Therefore, although SMA and
EMA are useful tools for demand analysis, it is essential to
consider their limitations when applying them in dynamic
and constantly changing environments, suggesting the need
to complement them with more complex models depending
on the application’s criticality.

The results obtained for the SARIMAX algorithms
from the StatsForecast and pmdarima libraries
demonstrate remarkable performance in demand forecasting.
The StatsForecast models predominantly exhibited
RMSE values ranging between 2.0 and 3.5, indicating
superior performance compared to simpler methods such
as SMA and EMA. On the other hand, the pmdarima
results proved equally promising, with RMSE values mostly
varying between 2.5 and 4.0. The comparison between
StatsForecast and pmdarima results suggests both
are more effective in demand forecasting when compared
to SMA and EMA methods. In summary, the results
from StatsForecast and pmdarima auto-optimized
SARIMAX algorithms demonstrate greater effectiveness in
demand prediction.

Figures 3 and 4 present the Sufficiency results for the
evaluated algorithms in forecasting the demand for electronic
components.

The results presented in Figures 3 and 4 reveal that simpler
methods, such as the naive forecast and random walk, exhibit
relatively low Sufficiency indices, ranging between 85.0%
and 87.5%. This performance is particularly concerning
when we consider that approximately 74.0% of the evaluated
cases show no parts replacements, as indicated by the zero-
forecast results.

The SMA and EMA algorithms demonstrated slightly
higher Sufficiency values compared to the naive and
random walk methods. These methods predominantly
guaranteed between 86.0% and 88.0% of sufficiency for
SLA compliance, demonstrating their limited yet slightly
superior effectiveness over baseline methods. This limitation
is anticipated, as these algorithms do not account for
seasonality effects or cyclical events.
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Figure 1. RMSE results for the six-month forecast for models with different pre-processing techniques.

Figure 2. Box-plot for RMSE results for the six-month forecast for models with different pre-processing techniques.

In contrast, the StatsForecast models, and particu-
larly pmdarima, demonstrate considerably superior perfor-
mance. The results indicate that when using pre-processing
techniques such as Standard Scaling and Min-Max
Scaling, the sufficiency can be further increased, reaching

values up to 93.0% in some cases. This suggests that data
normalization can improve the models’ ability to learn pat-
terns and trends, resulting in higher SLA compliance.

As a final evaluation of the results, pmdarima com-
bined with Standard Scaling pre-processing technique
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Figure 3. Sufficiency results for the six-month forecast for models with different pre-processing techniques.

Figure 4. Sufficiency box-plot for the six-month forecast for models with different pre-processing techniques.

achieves the highest sufficiency rates, predominantly rang-
ing between 90.0%− 93.0%. Concurrently, this experiment
demonstrates well-optimized and controlled RMSE values.

Given that full SLA compliance offers organizations sub-
stantial benefits—such as increased customer satisfaction,
enhanced market reputation, reduced operational costs, and
improved competitive positioning—this metric is prioritized,
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especially in the context of maintaining effective RMSE con-
trol. Consequently, the pmdarimamethod with Standard
Scaling pre-processing was selected as the demand fore-
casting solution for technical support operations.

Conclusion

This study has examined a range of forecasting models
for predicting the demand for electronic components,
highlighting the critical importance of selecting appropriate
methodologies to improve accuracy and reliability. By
conducting a comprehensive evaluation of simpler methods,
including naive forecasting, random walk, Simple Moving
Average (SMA), and Exponential Moving Average (EMA),
alongside more advanced techniques such as SARIMAX
with pre-processing methods, we have illustrated the varying
effectiveness of these approaches across different contexts.

The findings indicate that while simpler methods serve as
useful benchmarks, they often lack the capability to capture
the complexities inherent in demand patterns. In contrast, the
SARIMAX models, particularly those implemented through
the StatsForecast and pmdarima libraries, exhibited
superior performance, achieving lower RMSE values and
higher sufficiency rates. This highlights the significance of
utilizing more sophisticated algorithms that can account
for historical trends, seasonality, and other critical factors
influencing demand.

Furthermore, the application of pre-processing techniques,
such as standard scaling and min-max scaling, has proven
beneficial in enhancing model performance, evidencing the
importance of data normalization in improving forecasting
accuracy.

Ultimately, the findings of this research underscore the
necessity for organizations to prioritize SLA compliance
in their forecasting efforts, as it directly impacts customer
satisfaction, operational efficiency, and competitive position-
ing. The pmdarima method, combined with appropriate
pre-processing techniques, has been identified as the most
effective solution for demand forecasting in technical support
operations.

The adoption of the subgroup concept in data handling
was crucial for obtaining more precise and relevant
analyses. By structuring data into subgroups, we successfully
mitigated temporal data scarcity and identified patterns
and trends that would otherwise remain undetected. In
this context, the engineering department played a pivotal
role in establishing these correlations through consistent
organization of component data into subgroups.

Furthermore, the development and implementation of
predictive models were essential for integrating demand
forecasting into an automated system interconnected
with internal and inventory management systems. This
modernization of material planning processes not only
optimized operational efficiency but also ensured more
effective synergy between various corporate systems,
enabling more integrated and agile management.

References

References

[1] Fanoodi B, Malmir B and Firouzi Jahantigh F. Reducing
Demand Uncertainty in the Platelet Supply Chain Through
Artificial Neural Networks and ARIMA Models. Computers
in Biology and Medicine 2019; 113: 103415. DOI:10.1016/j.
compbiomed.2019.103415.

[2] Ameer T and Fatahi Valilai O. Predictive Exploratory Data
Analysis of Shopfloor CNC Machine Operation Through a
Machine Learning Model. Journal of Open Innovation:
Technology, Market, and Complexity 2025; 11(2): 100559.
DOI:10.1016/j.joitmc.2025.100559.

[3] Ji W and Wang L. Big Data Analytics Based Fault Prediction
for Shop Floor Scheduling. Journal of Manufacturing Systems
2017; 43: 187–194. DOI:10.1016/j.jmsy.2017.03.008.

[4] Rahman Mahin MP, Shahriar M, Das RR et al. Enhancing
Sustainable Supply Chain Forecasting Using Machine
Learning for Sales Prediction. Procedia Computer Science
2025; 252: 470–479. DOI:10.1016/j.procs.2025.01.006. 4th
International Conference on Evolutionary Computing and
Mobile Sustainable Networks.

[5] Sierra Espinel AI and Suarez Barón MJ. Applying Deep
Learning and Forecasting Techniques to the Pharmaceutical
Supply Chain. Procedia Computer Science 2025; 253: 2791–
2800. DOI:10.1016/j.procs.2025.02.003. 6th International
Conference on Industry 4.0 and Smart Manufacturing.

[6] Andrianakis I, Gkatas V, Eleftheriadis N et al. Prediction-
SCMS: The Implementation of an AI-Powered Supply Chain
Management System. International Journal of Industrial
and Manufacturing Engineering 2024; 18(3): 65–71. DOI:
10.5281/zenodo.10808780.

[7] Swamidass PM. INTERCHANGEABILITY. New York, NY:
Springer US, 2000. pp. 293–294.

[8] Kherdekar VA and Naik S. Impact of Feature Normalization
Techniques for Recognition of Speech for Mathematical
Expression. In Senjyu T, So-In C and Joshi A (eds.)
Smart Trends in Computing and Communications. Singapore:
Springer Nature Singapore. ISBN 978-981-97-1313-4, pp.
109–117.

[9] Hyndman RJ and Athanasopoulos G. Forecasting: Principles
and Practice. Melbourne, Australia: OTexts, 2021.

[10] Hansun S. A New Approach of Moving Average Method in
Time Series Analysis. In 2013 Conference on New Media
Studies (CoNMedia). pp. 1–4. DOI:10.1109/CoNMedia.2013.
6708545.

[11] Klinker F. Exponential Moving Average versus Moving
Exponential Average. Mathematische Semesterberichte 2011;
58(1): 97–107.

[12] Box GEP, Jenkins GM, Reinsel GC et al. Time Series
Analysis: Forecasting and Control. 5 ed. Wiley, 2015.

[13] Liemohn MW, Shane AD, Azari AR et al. RMSE is not
enough: Guidelines to Robust Data-Model Comparisons for
Magnetospheric Physics. Journal of Atmospheric and Solar-
Terrestrial Physics 2021; 218: 105624. DOI:10.1016/j.jastp.
2021.105624.

Prepared using sagej.cls


	Introduction
	Material and methods
	Database
	Pre-processing
	Min-Max Scaler
	Standard Scaler

	Prediction models
	Zeroes forecast
	Naive forecast
	Random Walk
	Simple Moving Average (SMA)
	The Exponential Moving Average (EMA)

	Seasonal AutoRegressive Integrated Moving Average with Exogenous Variables - SARIMAX
	Metrics
	Root Mean Square Error (RMSE)
	Sufficiency


	Results
	Conclusion
	References

