
A Generalized Small Area Estimation Model: Validated with the

Children Anemia Study

Abstract

Small area estimation (SAE) is a well-known method to produce reliable esti-

mates for target variables associated with small areas and small sample sizes, and

it is remarkably growing for public health applications. Direct survey estimates

(DESvy) typically produce imprecise and unreliable estimates since they are ob-

tained from the target variable of interest under the sampling model. To address

this problem, this paper proposes generalized direct survey estimates (GDESvy)

by incorporating the survey independent variables into the current DESvy. This

approach improves the SAE model estimates by including survey independent vari-

ables in the sampling model through the proposed generalized small area estimation

(GSAE). To validate and assess the performance of the proposed GSAE model, we

�rst utilized independent variables from the Ethiopian Demographic and Health Sur-

vey (EDHS) to produce GDESvy estimates. Subsequently, we employed auxiliary

variables from the population and housing census at the local level of Ethiopian ad-

ministrative zones to provide precise GSAE estimates under the Fay-Herriot model.

The results demonstrate that the GDESvy and GSAE estimates outperform the

corresponding DESvy and SAE estimates, respectively, for anemia status among

children aged 6�59 months, by producing lower standard errors. These �ndings

are crucial for informing policy formulation and budget allocation at lower levels of

government administration.

Keywords: Small area estimation, Survey sampling, Children's anemia, Gen-

eralized direct survey estimation, Generalized small area estimation.

1



1 Introduction

The need for small-area statistics has grown signi�cantly in recent years. Standard

survey estimation methods (such as design-based direct survey estimators) for small areas

(or small domains), which only use small area samples, are unreliable since these domains

are subsets of the population with small sample sizes [1]. Although increasing the survey

sample size can solve the issue, this approach is typically rarely taken because it requires

time and �nancial resources, particularly for low- and middle-income countries. Health

planners and policymakers rely on population health data at detailed geographic levels

to describe health needs and to establish and assess health programs. However, estimates

for local authorities are typically not possible due to the lack of geographic precision in

population-based health survey data [2, 3].

Small area estimation (SAE) solves the problems of producing reliable estimates of

a variable of interest for which sample sizes are too small for adequate precision [3].

The SAE provides a methodical approach to integrating direct survey estimates and

auxiliary information, exploring the link between the outcome of interest and auxiliary

data, and taking into consideration the sources of uncertainty in the model components

[3]. By o�ering accurate estimates for areas or domains with small sample sizes, SAE

approaches have emerged as essential tools in many scienti�c �elds, supporting well-

informed decisions. The SAE under the area-level model has sampling model and linking

model components [1, 3]. The sampling model is used to obtain direct survey estimates

(DESvy), and the linking model is employed to link the survey target variables (response

variables) to the auxiliary variables obtained from the housing and population census

datasets.

Thus, the e�ectiveness of SAE methods to produce acceptable small-area estimates

has attracted a lot of attention [3]. In this context, reliable small-area estimates are often

generated using model-based SAE methods that "borrow strength" via statistical models

and auxiliary variables [1, 3, 4]. Compared to conventional direct survey estimates, these

estimates are typically more e�cient [5]. Model-based small area estimates are typically

generated to assess the e�ciency advantages over the survey-based estimates [3,6,7]. The

most important thing in the SAE is reducing the variabilities of area-level estimates for

small sample sizes and enhancing the reliability of the direct survey estimates [3, 8, 9].

Several scholars have extended the concept of the SAE to various statistical models
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since it was introduced, and its value has been established. These include Bayesian SAE,

multivariate SAE, spatial SAE, spatiotemporal SAE, and others [4, 10, 11]. Extensions

of the Fay�Herriot model that draw strength from time have been proposed by several

authors [4,12,13] since better small area estimators can be obtained by using the relevant

information provided by historical data. A model with several temporal instants and

autocorrelated structure for sampling errors was presented by Choudry and Rao [14]. A

model that borrows data over time and across regions was put forth by Rao and Yu [8].

To determine the median income of four-person families for American states, Ghosh [15]

suggested a time correlated area-level model [1, 3, 10].

Some extensions of the Rao�Yu model with applications to the estimation of labor or

poverty indicators were provided by many authors [10,16�20]. For spatiotemporal models

with time-varying random slopes that follow an autoregressive process was introduced

by Singh [4]. A more complex model with area-by-time random e�ects and regression

coe�cients that vary by area and time was put out [21]. Other studies used data from

many sources, particularly survey datasets, to increase the reliability of the SAE [22�28].

To the best of our knowledge, the sampling model in SAE applications did not explore

the independent variables of the survey, which are already present in the survey dataset

to compute the direct survey estimates of an outcome variable [3, 9, 9, 20, 29�31]. This

produces large variabilities in the direct survey estimates and the small area estimates.

In research literature, the direct survey estimates of the variables of interest are obtained

directly from the survey without including the survey's independent variables [9,31], and

then lead to producing large standard errors. Suitable direct survey estimates are required

since these estimates serve as the foundation for model-based SAE computations. Thus,

to �ll this knowledge gap in this �eld, we propose to include the survey independent vari-

ables to compute the direct survey estimates using weighted survey logistic regressions,

which we subsequently name as the generalized direct survey estimates (GDESvy). To

provide more accurate small area estimates, this research aims to validate the GDESvy

to combine the DESvy with housing and population census auxiliary information under

the Fay-Herriot model, and then subsequently named generalized small area estimation

(GSAE).

Anemia in children is used to verify the improvements of new concepts for GSAE and

GDESvy with their related SAE and DESvy. Anemia is a condition in which the concen-
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tration of blood hemoglobin drops below predetermined thresholds. Anemia in mothers

and children is a serious public health problem worldwide, such as low birth weight, im-

paired neurocognitive and motor development in children, as well as an increased risk of

postpartum hemorrhage, infection, and maternal mortality for women [32�34].

To achieve the ambitious plan of decreasing the risk of anemia in children and re-

productive age women by 2030, the UN Sustainable Development Goals (SDGs) of 2012

include prevention and prompt treatment of anemia [13, 35]. The risk of anemia in�u-

ences all SDGs, including ending poverty in all its manifestations worldwide (Goal 1),

promoting good health and well-being (Goal 3), improving educational quality (Goal 4),

and gender equality (Goal 5) [33,36]. In addition, Goal 2 aims to end hunger, attain food

security and better nutrition, and advance sustainable agriculture by 2030, which also

has an impact on anemia risk [36]. All these e�orts did not su�ciently reduce the risk of

anemia. According to estimates from 2019, anemia a�ects 30% (571 million) of women

of reproductive age (15�49 years), 37% (32 million) of pregnant women, and 40% (269

million) of children aged 6�59 months. The WHO African and South-East Asia regions

are the areas most a�ected [37,38].

Anemia is a severe public health problem in Ethiopia, particularly for children. The

2016 Ethiopian Demographic Health Survey (EDHS) data showed that 57% of children

aged 6-59 months were anemic, a 13% increase from the 44% reported in the 2011 survey

[39]. Furthermore, the severity varies geographically and is more severe in di�erent regions

and administrative zones. As a result, we used the anemia status of children aged 6-

59 months for GSAE model validations to see the improvements over the usual SAE

approaches.

The rest of the paper is structured as follows. Section 2 presents the methods and

materials, including data sources and the survey-based DESvy and GDESvy, and model-

based SAE and GSAE methods; Section 3 presents the results; and Section 4 includes

the discussion and conclusions.

2 Methods and Materials

This study considers the estimates of design-based and model-based (Fay-Herriot

model) estimations for 6-59 months anemia status in Ethiopian administrative zones
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with (i.e., GSAE) and without (i.e., SAE) survey explanatory variables.

2.1 Data Sources

The data used in this study were taken from the housing and population census as

well as the EDHS. The target (i.e., response ) variable of anemia status for children under

the age of 6 to 59 months, together with associated independent variables, has been taken

from the 2016 EDHS data. The independent variables are utilized to enhance the design-

based GDESvy and then the model-based GSAE estimates. The independent variables

are provided from both the DHS survey and the population and housing census datasets

for di�erent purposes. The survey independent variables are used for improving the

design-based estimations (Table 1 ), and the census auxiliary variables are used for model-

based estimation under the Fay-Herriot model [29,40] (Table 1). The auxiliary variables

reviewed based on literature that are associated with 6-59 months anemia status [29,29]

(Table 1).

2.2 Advancing from DESvy to GDESvy in Survey Estimates

2.2.1 DESvy: Direct Survey Estimates

The sample survey design is taken into consideration while evaluating the estimator's

characteristics of the survey estimations [41]. This is the usual and mostly explored

method in SAE history [42]. The direct survey estimates (DESvy) only use the observed

values for the variable of interest (i.e., the target variable) and the survey sample weights

for the estimation of means and variances. For DESvy estimations of proportion and

variance without considering covariates. For zonal level DESvy estimates, we use the

primary sampling units (PSU) weight to adjust the zonal survey weights [3, 9]. The new

zonal level weight wz (or wi, if we align with the notation for zones) is the aggregated

value of the PSU weights ( wik) for a speci�c zone i. The new weight for zone i is given

by:

wi =
1

nk

nk∑
k∈i

wik,

where nk is the number of PSU in zone i and wik denotes the kth PSU weight in zone i.

Therefore, the weighted zonal level estimates with the new weights are computed.
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Table 1: Study variables
Survey variables Categories

Anemia status (target variable) 0 = no, 1 = yes

Children's sex 1 = male, 2 = female

Children's age in months continuous

Place of residence 1 = urban, 2 = rural

Age of mother 1 = 15�24, 2 = 25�34, 3 = 35�49

Educational level of mothers 0 = no education, 1 = primary, 2 = secondary, 3 = higher

Source of drinking water 0 = unimproved, 2 = improved

Household head 1 = male, 2 = female

Literacy 1 = illiterate, 2 = literate

Number of children continuous

Daughters who have died 0 = no, 1 = yes

Currently pregnant 0 = no, 1 = yes

Sons who have died 0 = no, 1 = yes

Type of toilet facility 0 = no toilet, 1 = have toilet

Wealth index combined 0 = poor, 1 = middle, 2 = rich

Current marital status 0 = single, 1 = married, 2 = other

Census auxiliary variables

Sex of children % male, % female

Age of children % below 2, % 2�4, % above 4

Parents' sex % male parents, % female parents

Parents' age % 15�25, % 25�35, % 35�49

Place of residence % rural, % urban

Source of drinking water % improved, % unimproved

Educational levels % non-educated, % primary, % secondary and above

literacy % literate, % illiterate

Marital status % married, % single, % others

Type of toilet % has toilet, % no toilet

Number of family members % less than �ve, % more than �ve

Number of died sons % no, % one, % more than two

Number of died daughters % no, % one, % more than two

Disability % disabled, % not disabled

Employment status % government, % private, % self-employed, % unemployed,

% others

Let Z be the set of zones, wij be a weight (new_weight) for individual j in zone i and

yij be a binary indicator for children anemia (1 if a child is anemic status, 0 otherwise),

then the weighted proportion of anemia status in children for zone i, denoted as p̂i, is

given by:

p̂i =

∑
j∈i wijyij∑
j∈i wij

,

where i ∈ Z denotes i-th zone and j ∈ i indicates j-th individual within zone i.

Note that the variance of children's anemia status for zone i, considering the new

zonal weights, is obtained as:
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V̂ar(yi) =

∑
j∈i wij(yij − p̂i)

2∑
j∈i wij

.

2.2.2 GDESvy: Generalized Direct Survey Estimates

Standard design-based DESvy approaches rely on only weighted survey data to di-

rectly estimate characteristics of interest for small areas [3]. While e�ective, these esti-

mates have large variabilities and su�er from a lack of precision. To resolve this problem

and �ll this knowledge gap, we propose a new framework that includes independent vari-

ables of a survey into the DESvy approach to reduce the variability and then improve the

precision and reliability. The proposed GDESvy includes the survey independent vari-

ables in the design-based DESvy approach to compute the direct survey estimates. This

concept could robust the standard DESvy, which only computes the direct survey esti-

mates from the response variables of interest. The weighted proportions with covariates

were employed in the design-based GDESvy approach to estimate the variables of inter-

est. Typically, to determine the estimates, a model for the distribution of characteristics

of interest is often assumed, given the relevant explanatory variables. Survey-weighted

logistic regression is used to include covariates in the survey design in order to improve

the precision of the design-based estimates and further enhance model-based estimates.

The likelihood function for survey weighted logistic regression is as follows:

L(β) =
∏
j∈i

[
p̂
yij
ij (1− p̂ij)

1−yij
]wij .

Then, the log-likelihood becomes as:

ℓ(β) =
∑
j∈i

wij [yij log(p̂ij) + (1− yij) log(1− p̂ij)] .

The survey regression error function in the survey design inherently adjusts for weights

and covariates to obtain coe�cient estimates as follows:

β̂ = argmin
β

∑
i∈Z

∑
j∈i

wij

[
yij log(p̂ij) + (1− yij) log(1− p̂ij)

]
.

The predicted probability of anemia status for individual j in zone i, p̂ij, is obtained
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using the �tted model as

p̂ij =
exp(X⊤

ij β̂)

1 + exp(X⊤
ij β̂)

.

The proposed design-based estimated prevalence of childhood anemia status in zone i, is

denoted by p̂∗i to di�erentiate the DESvy zonal level estimates (pi) at subsection 2.2.1,

and given as:

p̂∗i =

∑
j∈iwij p̂ij∑
j∈i wij

.

The variance of children's anemia status in zone i, considering covariates, is based on

the variability of the predicted probabilities p̂ij across the zone. It accounts for design-

based uncertainty and individual-level variation. We compute the weighted variance as

follows:

V̂ar(yi) =

∑
j∈i wij(p̂ij − p̂∗i )

2∑
j∈i wij

,

where p̂ij is the predicted probability for an individual j, derived from the �tted survey-

weighted logistic regression model using the svyglm function in R, and p̂∗i is a zone-speci�c

weighted mean of predicted probabilities for children's anemia status.

2.3 Advancing from SAE to GSAE in Area-Level Estimation

Area-level SAE is a statistical method that generates more accurate estimates for

small sample sizes by using a statistical model that combines auxiliary data from various

sources to "borrow strength" with more data. This produced accurate estimates for areas

where direct survey data alone might not be enough for estimation [3, 8].

The basic area-level Fay-Herriot model combines the direct aggregate zone-level survey

estimates with the available auxiliary variables obtained from various secondary sources,

mainly from census or records. Thus, the model has two components: (i) the sampling

model for the direct survey eestimates and (ii) the linking model consisting of the area-

speci�c auxiliary variables.

2.3.1 Standard Small Area Estimation

Small area estimates are most frequently used in o�cial statistics, using the sampling

and linking model approach and combining data from various sources. An area-level

model introduced by Fay and Herriot [43] was developed to generate small area estimators
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for median income in small localities across the United States. There is an extensive body

of literature in the �eld of SAE that explores and builds upon this model, highlighting its

signi�cance and widespread application in various statistical contexts [1, 3, 8, 13, 14]. In

this study, we use the DESvy for both estimated means and variances for sampling and

linking model parameters. The sampling and linking model for pi, with Gaussian errors

in the logit scale and a binomial distribution for yi with success probability pi (DESvy

estimated value), is presented as follows,

Sampling model: yi | pi, ni ∼ Bin(ni, pi), i = 1, 2, . . . ,m

Linking model: logit(pi) = x⊤
i β + νi,

where logit(pi) = log
(

pi
1−pi

)
, νi is distributed as N (0, σ2

ν), ni is the sample size of zone

i, xi is the vector of the area-level aggregated census auxiliary variables in this study,

speci�cally, zone-level aggregated values.

2.3.2 Generalized Small Area Estimation

The design-based survey regression methodologies are used to calculate the estimated

prevalence of childhood anemia for each zone. We now apply the proposed design-based

GDESvy to introduce the GSAE model, which takes into account both survey and cen-

sus covariates. The proposed childhood anemia prevalence estimates (GDESvy) under

subsection 2.2.2 (p∗i ) are used in the Fay-Herriot model, which is de�ned as:

Sampling model : yi | p∗i , ni ∼ Bin(ni, p
∗
i ), i = 1, 2, . . . ,m

Linking model : logit(p∗i ) = x⊤
i β + νi

logit(p∗i ) = log

(
p∗i

1− p∗i

)
, νi ∼ N (0, σ2

ν).

2.4 Model Comparison

We compare the performance of DESvy, GDESvy, SAE, and the GSAE for children

aged 6-59 months with anemia status using the root mean square error (root MSE) and

the coe�cient of variation (CV). The CV and standard error are used as measures of

variability associated with the estimate.
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Ethical considerations

Procedures and questionnaires for standard DHS surveys have been reviewed and

approved by ICF Institutional Review Board (IRB). Additionally, country-speci�c DHS

survey protocols are reviewed by the ICF IRB and typically by an IRB in the host

country. ICF IRB ensures that the survey complies with the U.S. Department of Health

and Human Services regulations for the protection of human subjects (45 CFR 46), while

the host country IRB ensures that the survey complies with laws and norms of the

nation. Therefore, Central Statistical Agency (CSA) is the national statistical agency of

Ethiopia, with a national mandate to produce timely, accurate o�cial statistics to support

democracy and economic growth and development in Ethiopia with aid of international

stakeholders. Therefore, CSA ethics council authorized all DHS data. Before taking part

in the survey, all participants provided written informed permission. All the data were

fully waived to the requirement for informed consent. There were no medical records

used in the research since it was a DHS dataset. we did get formal permission from the

DHS program to utilize the data for research purposes. The data is available at website

https://www.dhsprogram.com.

3 Results

3.1 The analysis of DESvy vs GDESvy

In the DESvy method, the estimations of the prevalence of childhood anemia (zonal-

wise estimations) use only the observed values for the variable of interest without con-

sidering the survey independent variables. However, as stated in subsection 2.2.2, the

GDESvy method incorporates the survey independent variables to determine the preva-

lence of anemia status and subsequently to enhance the DESvy estimates. Table 2 displays

the results of the survey weighted logistic regression for complex sampling data analysis.

GDESvy is the sampling model for GSAE, which takes into consideration the survey

independent variables listed in Table 2.
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Table 2: Survey weighted logistic regression coe�cients (GDESvy)
Independent variables Estimate Std. Error t-statistic Pr(>|t|)
Intercept 0.84950 0.44217 1.921 0.059383 .
Age of child -0.41068 0.02282 -17.998 < 2e−16 ***
Sex of child
Male (ref.)
Female -0.05344 0.08514 -0.628 0.532516
Literacy
Ilitrate (ref.)
Literate -0.40885 0.10549 -3.876 0.000262 ***
Educational level
None educated (ref.)
Primary 0.15864 0.11905 1.333 0.187637
Secondary 0.16100 0.19066 0.844 0.401725
Higher 0.37872 0.25429 1.489 0.141551
Age of mothers
15-24 years (ref.)
25-34 years -0.19904 0.10606 -1.877 0.065336 .
35-49 years -0.58925 0.13370 -4.407 4.31e-05 ***
Place of residence
Urban (ref.)
Rural 0.16253 0.16521 0.984 0.329109
Head of household
Male (ref.)
Female 0.29698 0.09642 3.080 0.003101 **
Number of children 0.08577 0.02018 4.251 7.41e-05 ***
Wealth index
Poor (ref.)
Medium -0.37405 0.11761 -3.180 0.002312 **
Rich -0.30105 0.11257 -2.674 0.009598 **
Daughters died
No (ref.)
Yes 0.08499 0.12378 0.687 0.494901
Current pregnancy
No (ref.)
Yes 0.21951 0.11387 1.928 0.058553 .
Sons died
No (ref.)
Yes -0.19477 0.11259 -1.730 0.088708 .
Current marital status
Single (ref.)
married 0.26809 0.42976 0.624 0.535084
Source of drinking water
Unimproved (ref.)
Improved 0.08597 0.08510 1.010 0.316390

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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3.2 Analysis of SAE vs GSAE

In this study, the survey independent variables are considered under the SAE chil-

dren's anemia status applications. The independent survey variables are incorporated in

GDESvy for the survey-based direct estimates to further improve the SAE at zonal-level

estimation. Therefore, for this analysis, the SAE and GSAE methods are associated with

the DESvy and GDESvy, respectively.

In small area statistics, the auxiliary variables borrowed from the population and

housing census dataset are linked to the survey target variables. The auxiliary variables

from population and housing census data are aggregated at the zonal level for model-

based small area applications. Consequently, an explanatory data analysis was conducted

for the selection of appropriate auxiliary variables using LASSO techniques prior to the

identi�cation of appropriate auxiliary variables for the SAE modeling approach. Thus,

Table 3 displays the appropriate auxiliary variables both in the SAE and GSAE analyses.

The area level random e�ect residual variances for the GSAE model are lower than the

SAE model estimates (Table 3).
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Table 3: Regression coe�cients and residual variance for SAE and GSAE models

SAE method

Variables Coe�cient Mean SD 2.5% 97.5%
Intercept β1 -16.31704 13.92627 -42.29657 8.434
Male for child β2 20.26810 19.72906 -15.26438 60.152
Child age 2-4 years β3 14.05058 12.21944 -7.84759 36.433
Below 2 years child age β4 -4.48501 11.06860 -22.19256 17.673
Urban β5 1.08156 1.41940 -1.53411 3.860
Female for parents β6 2.25077 1.99036 -1.20908 5.983
Private employment β7 -1.75765 4.02210 -9.59369 5.089
Unemployed β8 0.23919 2.79859 -4.85546 5.641
Other employment β9 -0.08746 2.16394 -4.08551 4.457
Parents age of 35-49 years β10 3.19297 5.01742 -5.62235 13.676
Residual Variance 0.118655 0.140515 0.007083 0.511

GSAE methods

Intercept β1 -8.3497 5.7373 -20.0037 2.876
Male for child β2 13.0368 9.6365 -5.8663 32.585
Child age 2-4 years β3 7.5268 4.4489 -1.2070 16.049
Below 2 years child age β4 -5.8993 3.2838 -12.5978 0.429
Urban β5 0.9945 0.6071 -0.2064 2.214
Female for parents β6 0.8742 0.7658 -0.5086 2.440
Private employment β7 -2.6343 1.1598 -4.7859 -0.184
Unemployed β8 -0.3799 1.1704 -2.6777 1.968
Other employment β9 0.1742 0.7606 -1.2650 1.680
Parents age of 35-49 years β10 0.9746 1.8080 -2.6645 4.546
Residual Variance 0.07820 0.05554 0.01146 0.215

3.3 Model Comparison

The estimated values for the DESvy and the standard SAE estimates are presented in

Figure 1 (left). On the other hand, the survey-based regression estimates, GDESvy, and

the corresponding model-based GSAE small area estimates are shown in the same �gure

(right). In both �gures, the standard SAE estimates are nearly consistent with the direct

survey estimates across almost all zones; however, the proposed model-based estimates

GSAE are nearly perfectly consistent with the corresponding survey-based estimates
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Figure 1: Direct survey and model-based estimates. The standard SAE estimates are on

the left, and the proposed method estimates are on the right.

The root MSE and CV are used to compare the DESvy, GDESvy, SAE, and GSAE

models. While the SAE and GSAE are model-based approaches that fall under the Fay-

Herriot model, the DESvy and GDESvy are design-based survey methodologies under

the survey weighted logistic regression. Model-based (SAE and GSAE) and design-based

(DESvy and GDESvy) methods were applied for �nding the estimates of children's anemia

in the Ethiopian zone, together with their CVs and root MSE. The sampling variability

is displayed as the estimates in CV and root MSE, and in general, larger CVs or root

MSE estimates are regarded as unreliable. A 20% CV was maintained as a threshold by

the United Kingdom's O�ce for National Statistics, however there is no exact guideline

for CV cut-o� values [44].

The zonal wise CV values for GSAE, SAE, GDESvy, and DESvy are displayed in

Figure 2 for the purpose of comparing and identifying the most reliable estimates. In

this study, the generalized model-based estimates produced by the GSAE approach are

compared with the conventional SAE methods, as measured by the CV. It is also com-

pared with the typical DESvy, which is determined solely by response variables, with the

GDESvy.

The CVs for DESvy vs GDESvy are shown in Figure 2 (left) for purpose of com-

parison. The DESvy estimates of childhood anemia prevalence have CVs over 20 for all

local administrative zones based on the �ndings presented in Figure 2 (left). But, the
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GDESvy estimates for some zones have CVs above, while the other zones have CVs below

this threshold. These results clearly demonstrate that the GDESvy estimates are more

credible than the DESvy since they have smaller CV values (see supplementary �le 5).

The SAE vs GSAE CV are presented in Figure 2 (right) for model-based comparison.

The CV for GSAE estimates are below the thresholds for all zones, while the CV for SAE

estimates are greater than the expected thresholds. In addition, the GSAE estimates

are smaller than the corresponding SAE estimates across all the local administrative

zones. Thus, the generalized model-based estimates produced by the GSAE approach

are more precise and reliable than the corresponding SAE estimates. This is due to the

inclusion of survey independent variables in the survey weighted regression for direct

survey estimation procedures. Therefore, we can conclude that the GSAE improved the

accuracy of standard SAE model estimates by including survey-independent variables in

the sampling model.

Zonal wise root MSE for survey-based (left) and model-based (right) are displayed in

Figure 3. Figure 3 (left) shows that the root MSE of the survey-based estimates, DESvy,

are larger than the corresponding GDESvy estimates. Furthermore, Figure 3 (right)

shows that the root MSE of GSAE is smaller than the comparable SAE estimates. This

demonstrates how the new method improved the accuracy and reliability of estimates of

childhood anemia throughout the Ethiopian administrative zones. In general, small area

estimates produced by the GSAE are more e�cient than the corresponding SAE model

estimates, and the GDESvy is also better than the corresponding DESvy values.

Table 4 displays the summary statistics of the CV for both survey-based and model-

based estimates. The results include the minimum, �rst quartile (1st Q), median, mean,

third quartile (3rd Q), and maximum for the design-based estimates (DESvy and GDESvy)

and the model-based estimates (SAE and GSAE). In general, the summary statistics for

GDESvy are lower than those for the corresponding DESvy estimates, and similarly, the

GSAE values are lower than those for SAE. The results show that the generalized models

provide more precise estimates by reducing the variability of estimates for 6-59 months

anemia status across Ethiopian local administration zones.
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Figure 2: Zonal wise percentage coe�cient of variation (CV, %) for survey-based (left)
and model-based (right).

Table 4: Summary statistics of CVs for the design-based and model-based estimates.

DESvy GDESvy SAE_Census GSAE_Census

Min 31.83 17.97 7.695 5.530

1st Qu. 48.75 22.84 22.474 7.672

Median 65.36 25.13 27.853 9.179

Mean 69.48 25.73 29.075 10.079

3rd Qu. 82.51 27.63 33.273 11.522

Max 152.98 37.26 70.407 19.864

4 Discussion and Conclusion

The study characteristics of interest for children aged 6-59 months and their anemia

status were derived from the 2016 EDHS data [39]. To integrate the survey data for the

SAE application, the auxiliary variables were extracted from the 2007 housing and pop-

ulation census dataset [45]. The survey-weighted logistic regression analysis was applied

to include the survey-independent variables in the generalized model. We used the target

variable of the survey, the independent variables of the survey, and the auxiliary variables
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Figure 3: Zonal-wise root MSE for survey-based (left) and model-based (right) estima-
tions of childhood anemia.

of the census for the status of children's anemia to validate the GSAE model. This study

used the well-known Fay-Herriot model for GSAE to produce more precise and reliable

estimates by including independent variables from the survey. The prevalence of anemia

within 6-59 months in children was estimated using an area-level model that linked data

from the 2007 housing and population census with the 2016 survey datasets.

In many research �ndings, the precise estimates of disaggregated-level are enhanced

by the SAE approach in comparison to survey estimates [3,19,20,46]. Furthermore, other

researchers extended the SAE method to integrate di�erent statistical methods to enhance

the reliability of the disaggregate level estimations [4, 7, 47]. The Behavioral Risk Factor

Surveillance System (BRFSS) of the U.S. Centers for Disease Control and Prevention

implemented a transformation to the survey data to reduce extremely unstable survey

variances using a hierarchical Bayes small area estimate model [48], which is consistent

with the current �ndings.

Singh proposed a spatiotemporal regression model for the SAE problem, which has

large variabilities, in the general mixed e�ects model framework [4]. The small area esti-

mates have improved due to a common autocorrelation parameter among the small areas.

Additionally, the inclusion of �xed spatial auto-correlation across the small areas gives

spatial-temporal SAE models an advantage over SAE models without spatial considera-

tion [4]. Using data from the Spanish living conditions survey, multivariate Fay-Herriot
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models for estimating small area indicators were introduced and further explored. As a

result, survey estimates using a new method are better than those using the standard

SAE method [12]. Our �ndings are consistent with the those study �ndings in producing

reliable estimates.

In 2018, Anjoy and his colleagues carried out a study to estimate the disaggregated-

level poverty incidence in Odisha using an area-level hierarchical Bayes SAE model. The

results demonstrated that the model-based estimates produced by the hierarchical Bayes

SAE method perform more accurately than the SAE and direct survey estimates [49].

Similar research �ndings, which are in line with our �ndings, are multivariate, spatial, and

spatiotemporal SAE approaches for Ethiopian undernutrition survey data for children

under �ve, demonstrated that the estimates are more accurate and reliable than the

comparable conventional SAE estimates [11,50,51].

Some SAE methods, cited in this discussion, improved the survey estimates and the

standard SAE of the estimated values for the characteristics of interest: poverty, health,

and agriculture [4, 12, 48]. However, these studies did not use the survey's independent

variables for the sampling model and then in the linking model. Our study considered

the survey independent variables in the GDEsvy model to introduce the GSAE model

and then improve the standard SAE estimates of the children's anemia study.

The GSAE is used in this study to �ll in the current research gaps and improve the

SAE estimates while taking sample survey independent variables into account. In order to

lower the variability of the small area estimates of the anemia status of children aged 6 to

59 months in the Ethiopian administrative zones, the survey's independent variables were

incorporated into the design-based models. The GSAE approach outperforms the survey

estimates and the traditional SAE, which is consistent with the other research �ndings.

Figure 2 (left) shows the comparison of the design-based direct survey estimates with and

without survey independent variables. The GDESvy estimates are more precise than the

comparable DESvy estimates. This is due to the fact that GDESvy estimations produced

accurate survey estimates by including the survey independent variables into the design-

based survey model. Direct survey-based variance estimates, calculated only using the

target variables of interest, are frequently applied to compute the SAE under the Fay-

Herriot model. In order to compute the design-based direct survey estimates (both the

mean and variance estimates), we incorporated the survey independent variables into this
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investigation. Consequently, there is consistency in the estimated means when comparing

these two model estimations.

The numerical improvements of the new approach compared to existing methods

were assessed based on the CVs. In terms of design-based survey estimates, the new

approach showed improvements ranging from a minimum of 31.83% for DESvy to 17.97%

for GDESvy, a mean improvement of 69.48% for DESvy to 25.73% for GDESvy, and a

maximum improvement of 152.98% for DESvy to 37.26% for GDESvy. Comparably,

switching from the SAE to the recently suggested GSAE model signi�cantly lowers the

range of estimates for child anemia. Speci�cally, the minimum CV reduced from 7.695%

for SAE to 5.53% for GSAE, the mean decreased from 29.07% for SAE to 10.08% for

GSAE, and the maximum dropped from 70.41% for SAE to 19.86% for GSAE. The �rst

and third quartiles also indicated signi�cant improvements in variability reduction under

the GSAE model. This is a signi�cant improvement in reducing the variability of the

survey estimates and the standard SAE estimates for children aged 6 � 59 months of

anemia status.

In these �ndings, we found additional insights beyond the existing Fay-Herriot model

estimates to further improve the estimates of anemia status for the 6-59 months children

by reducing the variabilities and by improving the precision of survey estimates. These

improvements are due to including survey independent variables into the direct survey es-

timation process and then to the Fay-Herriot models. The performance measures of these

�ndings are in line with other research �ndings [4, 11, 31]. As demonstrated by the �nd-

ings from CV and the root MSE, GDESvy estimates are signi�cantly more precise than

comparable DESvy estimates in reducing the variabilities. Similarly, GSAE estimates re-

duce the variability of children's anemia status better than traditional SAE estimations.

In general, the GSAE model signi�cantly increases the e�ciency of obtaining zonal-level

estimations of anemia status in children aged 6-59 months. In summary, incorporating

independent variables from the survey improved the performance of the newly devel-

oped GSAE model, leading to more accurate estimates of childhood anemia status across

Ethiopian administrative zones. This research leads us to the conclusion that survey

independent variables are crucial for small area statistics because they lower the vari-

ability of estimates, which improves precision. These �ndings o�er valuable insights for

policymakers, decision-makers, legislative bodies, and non-governmental organizations.
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Supplementary �le (Sup 1)

Sup 1: Summary of CV for children aged 6-59 months

anemia status in the Ethiopian zones

Zones Sample Size DESvy GDESvy SAE_Census GSAE_Census

Addis Ketema 35 81.71 34.57 33.61 15.87

Afder 46 47.42 18.63 65.54 17.56

Agnuak 276 48.18 21.30 25.62 12.56

Akaki Kality 14 54.32 21.83 38.65 16.03

Alaba Sp Woreda 22 70.43 27.14 33.11 13.56

Arada 19 55.23 24.63 34.07 15.62

Arsi 138 46.15 18.70 21.15 11.16

Asosa 318 67.42 27.21 25.09 12.46

Awi 32 100.68 41.67 37.32 16.52

Awsi 180 39.73 17.15 13.00 6.73

Bale 65 56.50 25.47 28.89 13.78

Bench Maji 56 112.69 47.40 54.25 18.49

Bole 23 152.98 68.41 46.20 20.74

Borena 54 44.10 19.10 27.15 12.34

Central Tigray 228 65.36 26.41 23.64 12.46

Dawuro 33 113.08 48.90 29.31 15.80

Degehabur 157 45.10 18.82 18.28 8.44

Derashe 36 103.54 40.02 43.07 18.78

Dire Dawa 350 46.84 19.62 18.29 9.01

East Gojam 87 82.10 34.21 29.04 14.20

East Harerge 150 42.45 17.86 29.94 12.34

East Shewa 44 44.84 22.03 29.85 14.47

East Wellega 49 85.51 35.47 24.08 13.33

Fantana 131 41.42 17.83 20.04 9.45

Gabi 99 45.74 19.24 21.15 8.72

Gamo Gofa 107 60.21 23.31 31.65 13.51
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Sup 1: Summary of CV for children aged 6-59 months

anemia status in the Ethiopian zones

Zones Sample Size DESvy GDESvy SAE_Census GSAE_Census

Gedio 67 53.94 21.92 35.34 13.28

Guji 78 45.27 19.25 21.57 11.26

Gulele 28 61.35 25.64 38.33 17.01

Gurage 70 66.28 26.58 27.38 12.20

Hadiya 87 64.79 26.96 29.88 13.72

Hareri 373 51.73 23.19 20.05 10.41

Hari 119 46.23 19.47 12.46 7.33

Huru Guduru wel 9 151.64 63.18 32.56 16.75

Ilubabor 64 58.73 20.21 26.86 12.86

JiJiga 160 37.28 15.45 12.24 5.84

Jimma 137 66.59 24.47 35.17 14.98

Ke�a 69 112.37 48.89 45.22 20.93

Kelem Wellega 31 56.90 24.05 26.15 13.02

Kemashi 84 83.74 32.03 39.61 17.73

Kenbata Tembaro 39 68.46 31.04 32.33 13.89

Kilbet 215 48.92 17.96 31.07 11.04

Kirkos 20 99.29 36.57 78.24 24.35

Kolfe Keranyo 45 92.04 36.07 74.87 24.74

Konta sp woreda 19 50.43 19.30 24.77 11.67

Korahe 97 38.41 14.75 12.82 6.27

Liben 112 38.74 17.02 17.66 7.42

Lideta 17 98.66 38.26 69.94 25.88

Metekel 257 108.64 45.12 31.32 15.66

Mezhenger 93 97.44 44.98 33.68 16.95

Nefas silk 41 65.37 28.76 35.53 16.64

North Gondar 183 76.18 32.39 29.13 13.95

North Tigray 132 71.10 30.37 31.04 14.29

North Wollo 50 79.55 30.22 28.91 14.31
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Sup 1: Summary of CV for children aged 6-59 months

anemia status in the Ethiopian zones

Zones Sample Size DESvy GDESvy SAE_Census GSAE_Census

NShewaR3 74 74.06 29.88 33.30 14.94

NShewaR4 28 57.51 24.60 30.04 13.99

Nuer 135 67.51 32.08 24.67 11.94

NW Tigray 176 60.17 25.16 26.08 13.09

Oromia Sp Zone 16 80.52 35.02 25.40 13.40

Seltie 41 48.26 20.41 21.70 10.48

Shabelle 120 37.29 14.96 11.31 5.68

Shaka 8 136.74 49.11 32.84 17.57

Shinile 11 64.95 29.58 23.83 10.88

Sidama 167 60.03 24.12 27.47 12.50

South Gonder 107 90.65 34.62 27.99 15.09

South Omo 36 78.88 35.21 26.46 13.15

South Tigray 219 67.22 27.61 27.32 12.86

South Wollo 88 85.21 39.22 31.58 15.01

SW Shewa 13 31.83 12.51 19.11 9.29

Waghemira 36 74.34 32.24 34.87 15.99

Welewel 48 35.48 13.82 13.97 5.93

West Arsi sp zon 117 54.77 21.89 30.72 12.61

West Gojam 103 89.51 38.81 48.32 19.12

West Harerge 103 52.21 20.09 23.62 12.38

West Shewa 73 65.55 23.59 20.65 10.84

West Tigray 74 70.09 28.35 32.58 14.25

West Wolega 39 90.55 40.33 25.83 14.04

Wolayita 125 69.48 27.95 29.39 13.54

Yeka 63 59.42 23.95 31.69 14.61

Yem sp woreda 13 112.33 52.33 61.53 22.28
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