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Abstract. One of the most important tasks in data mining is the discovery of frequent sequential patterns. This task focuses on identifying 
subsequences within a sequence database that frequently occur in the same timestamp order. An extension of this task is timed sequential 
pattern mining, which discovers frequent sequences from a sequence database, along with the temporal relationships in patterns. Mining such 
patterns supports a wide range of applications, including recommendation systems in transportation, healthcare, and weather forecasting. 
While many existing approaches have been developed to mine sequential patterns and timed sequential patterns, they assume the database is 
static.  However, in real-world scenarios, databases are dynamic, evolving in response to user interactions, updated data, and changing 
requirements. Consequently, finding the complete set of timed sequential patterns efficiently, without repeatedly rescanning the database from 
scratch, remains a significant research challenge. To fill this gap, a novel algorithm called MINIng Timed Sequential Patterns in DYnamic 
Sequence Databases (MinitsDays) is proposed. MinitsDays is designed to discover timed sequential patterns that capture the temporal relation 
in patterns in a dynamic timed sequence database. Extensive theoretical and experimental evaluations were conducted to assess the 
performance of MinitsDays using both real-world and synthetic datasets. The experimental results demonstrate the effectiveness and 
advantages of the proposed approach. Additionally, the algorithm leverages parallelism through multicore CPUs to significantly enhance 
performance. 
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1. Introduction 

Sequential pattern mining [1] is a data mining task that discovers frequent subsequences in a sequence database 
of time-ordered transactional data. Identifying interesting, useful, and unexpected patterns is beneficial for a wide 
range of real-world applications, such as educational data mining [2],  network intrusion detection [3] , and 
customer shopping behaviors [1]. Existing sequential pattern mining algorithms, such as those in[4] ,[5], [6]and 
[7], use implicit timestamps to order the itemsets within a sequential pattern. However, they do not retain the 
transition time between these itemsets. In many applications, it is crucial to know the time it takes to move from 
one itemset to another within a pattern. For example, in healthcare applications, knowing when the next symptom 
of a heart attack will occur can help healthcare providers make more accurate diagnoses, administer timely 
treatments, and intervene earlier in critical cases. By including the temporal relationship of the transition time—
indicating when the next symptom is likely to appear, we can answer not only questions like "In which order do 
heart attack symptoms frequently occur?" but also "When do these symptoms frequently occur?" This led to the 
idea of incorporating transition time between itemsets in a sequential pattern, indicating the required time range 
to move from one itemset to another. This newly discovered type of pattern is referred to as a timed sequential 
pattern. 
 
Most sequential pattern mining algorithms, including the two proposed algorithms, Minits [8] and Minits-AllOcc 
[9], assume that databases are static, meaning they do not change over time. However, real-world databases are 
dynamic and can evolve in response to various factors such as data updates, user interactions, or changing 
requirements. Therefore, it is necessary to develop an algorithm capable of detecting and handling these changes, 
and of discovering the complete set of timed sequential patterns after the database has been modified, without re-
mining the entire database from scratch. The following are different scenarios that can occur in a timed sequence 
database:  
 
• CASE 1: New tuples are inserted into the Timed Sequence Database (TSDB). For example, Fig. 1 shows the 

TSDB four tuples for four patients. Each patient's temperature (T) and blood pressure (BP) are measured 
during their visits. After one week, for example, a new patient may be added, requiring the insertion of a new 
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tuples into the existing TSDB. The updated TSDB is shown in Fig. 2. As new patients continue to arrive, 
additional tuples will be appended to the existing TSDB.  

 
• CASE 2: New events are inserted into an existing timed sequence in the TSDB. For example, a company in 

the oilfield services industry may attempt to predict the failure of electric pump sensors by collecting daily 
measurements for temperature (TC), pressure (PC), and voltage (VC). Fig. 3 shows the TSDB for three 
sensors (S). After one day, new measurements for each sensor are obtained and must be inserted, highlighted 
in bold, into the existing tuples in the TSDB as shown in Fig. 4. Each day, a new version of the TSDB is 
generated, maintaining the same number of tuples but with varying sequence lengths. 

• CASE 3: An existing timed sequence is deleted from the Timed Sequence Database (TSDB). In business 
intelligence, stock data is often analyzed in detail to assess the viability of each investment. A snapshot of a 
stock’s timed sequence database is shown in Fig. 5. The stock price at the opening is referred to as the open, 
and the price at the closing is referred to as the close. Based on their values, opening and closing prices are 
categorized into three levels: low (open1 or close1), medium (open2 or close2), and high (open3 or close3). 
For instance, the fluctuations in the stock price of a company that filed for bankruptcy five years ago, such as 
C4, may no longer significantly impact the current market trends. Therefore, it may be unnecessary to retain 
that information in the TSDB, and the corresponding tuples can be deleted. As shown in Fig.6. 

 
Sensor ID Timed Sequence 

S1 <{5,TC1, PC5, VC1}, {6,TC1,PC5, VC2}, {9,TC1,PC1,VC1}> 
S2 <{2,TC3,PC4, VC3}, {3,TC2, PC1,VC2}, {6,TC3,PC3,VC1}> 
S3 <{10,TC3,VC1}, {12,PC4,VC1}> 

Fig. 4. Updated Timed Sequence Database for Sensors 

 

 

Patient ID Timed Sequence 
P1 <{5, TC1,BPC3}, {12, TC1,BPC2}> 
P2 <{2, TC1,BPC1}, {19,TC1,BPC3}, {25,TC1,BPC5}> 
P3 <{21, TC1,BPC3}, {25,TC1,BPC2}> 

P4 <{10, TC1,BPC2}, {20,TC1,BPC2}, {30,TC2,BPC3}> 

P5 <{34,TC2 BPC5}> 

Fig. 2. Updated Timed Sequence Database after insertion a new patient 

 

 

Patient ID Timed Sequence 
P1 < {5, TC1,BPC3}, {12, TC1,BPC2}> 
P2 < {2, TC1,BPC1}, {19,TC1,BPC3}, {25,TC1,BPC5}> 
P3 < {21, TC1,BPC3}, {25,TC1,BPC2}> 

P4 < {10, TC1,BPC2}, {20,TC1,BPC2}, {30,TC2,BPC3}> 

Fig. 1. Timed Sequence Database for Patients 

 

 

 
Sensor ID Timed Sequence 

S1 <{5,TC1, PC5, VC1}, {6,TC1,PC5, VC2}> 
S2 <{2,TC3,PC4, VC3}, {3,TC2, PC1,VC2}> 
S3 <{10,TC3,VC1}> 

Fig. 3. Timed Sequence Database for Sensors 

 

 



 

• CASE 4: The schema of an event in the TSDB is changed. Consider the same TSDB from Case 1 in Fig. 1, 
which contains temperature (T) and blood pressure (BP) measurements for four patients. Originally, each 
event in the TSDB follows the schema: (Timestamp, Temperature, Blood Pressure). However, doctors may 
decide to monitor an additional measurement—cholesterol level (C)—to assess its clinical relevance. As a 
result, the schema of each event in the TSDB is updated to: (Timestamp, Temperature, Blood Pressure, 
Cholesterol Level). In this case, two possible scenarios may arise: 
 

o CASE 4.1: Changing the schema for newly incoming events. Starting from the current timestamp, the new 
schema will be applied, and all previous events will be ignored, since the doctors are now interested in 
identifying relationships among the three updated symptoms. The updated TSDB is illustrated in Fig. 7. This 
scenario can be treated as if we are working with a new TSDB containing only the data shown in Fig. 8. To 
discover the new set of timed sequential patterns among the three symptoms, an algorithm must process the 
updated version of the TSDB and extract the revised timed sequential patterns. Subsequently, if a new patient 
P5 arrives, their timed sequence will be inserted into this TSDB, falling under the process described in CASE 
1.  

 
o CASE 4.2: Modifying the schema of all previous events. In this scenario, we assume that the data, such as 

cholesterol levels (C), was available but previously ignored, as doctors were not initially interested in 
analyzing it. Later, however, they decide to study the relationship between temperature (T), blood pressure 
(BP), and cholesterol level (C). To accommodate this, it becomes necessary to reprocess the existing raw 
data: read it again, discretize the values, and reconstruct the Timed Sequence Database (TSDB), as shown in 
Fig. 9. All of these tasks are considered pre-processing steps. Once the updated version of the TSDB is ready, 

Company ID Timed Sequence 
C1 <{5, Open1, Close3}, {12, Open1, Close2}, {17, Open1, Close3}> 
C2 <{21, Open1, Close1}, {24, Open1, Close3}, {39, Open1, Close3}> 
C3 <{2, Open2, Close3}, {19, Open1, Close2}> 

Fig. 6. Updated Timed Sequence Database for Stocks after delete Sears company 

 

 

Patient ID Timed Sequence 
P1 <{5,TC1,BPC3},{12,TC1,BPC2},{31,TC1,BPC1,CC1},{35,TC2,BPC5,CC2}> 
P2 <{2, TC1,BPC1}, {19,TC1,BPC3}, {25,TC1,BPC5}> 
P3 <{21, TC1,BPC3}, {25,TC1,BPC2}, {32, TC2,BPC3,CC2}> 
P4 <{10, TC1,BPC2}, {20,TC1,BPC2}, {30,TC2,BPC3}> 

Fig. 7. Updated Timed Sequence Database for Case 4.1 

 

 Patient ID Timed Sequence 

P1 <{31,TC1,BPC1,CC1}, {35, TC2,BPC5,CC2}> 

P3 <{32, TC2,BPC3,CC2}> 

Fig. 8. New Times sequence database for Case 4.1 

 

Company ID Timed Sequence 

C1 <{5, Open1, Close3}, {12, Open1, Close2}, {17, Open1, Close3}> 

C2 <{21, Open1, Close1}, {24, Open1, Close3}, {39, Open1, Close3}> 

C3 <{2, Open2, Close3}, {19, Open1, Close2}> 

C4 <{4, Open1, Close3}, {9, Open1, Close3}, {13, Open1, Close3}> 

Fig.5.  Timed Sequence Database for Stocks 

 

 



the algorithm can then be executed. At this stage, the database is treated as an entirely new TSDB, and the 
algorithm is run from the beginning to discover the timed sequential patterns that capture the relationships 
among the newly considered symptoms. 

• CASE 5: An existing event is deleted or modified. In the Knowledge Discovery in Databases (KDD) process, 
there is a critical step known as pre-processing. During this step, any missing, erroneous, low-quality, or 
redundant data is either removed or corrected. As a result, once pre-processing is complete, there should be 
no need to delete or modify existing events. We assume that the output of the pre-processing stage is accurate 
and reliable, and therefore, no further changes to the existing events are required. 
 

The contributions of this paper are as follows: 
1. We propose the MinitsDays algorithm, which effectively handles CASE 1, CASE 2, and CASE 3. It can 

discover timed sequential patterns in an updated Timed Sequence Database (TSDB) resulting from the 
insertion or deletion of timed sequences, without the need to remine the entire TSDB. 

2. We introduce a parallel implementation of the MinitsDays algorithm to enhance performance when 
working with Big Data. 

3. We conduct extensive experiments comparing the performance of the single-core version of the algorithm 
against its multi-core counterpart, using both real and synthetic datasets. 

 
The remainder of the paper is organized as follows. Section 2 reviews the problem definitions. Section 3 discusses 
related work. Section 4 details the algorithm's workings. Section 5 presents performance evaluations across 
different datasets. Finally, Section 6 concludes the paper and outlines future work. 

2. Problem Definition  

In this section, we review the definitions of the sequential pattern mining problem [1] and timed sequential 
pattern mining problem [9]. Recalling the traditional sequential pattern mining problem [1], we define an itemset 
I as a set of items, such that I ⊆ X, where X = {x1, x2, . . . xl} is a set of items in the database. A sequence (tuple) 
s is an ordered list (based on timestamps) of itemsets. A sequence A = <{a1}, {a2}, …{an}> is contained in 
another sequence B = <{b1}, {b2}, …{bm}> and B is a super-sequence of A if there exists a set of integers, 1≤ j1 

< j2 <…< jn ≤ m, such that 𝑎! ⊆ 𝑏"! , 𝑎# ⊆ 𝑏"" , … , 𝑎$ ⊆ 𝑏"$.  
A sequence database S is a set of sequences <sid, si>, where sid is a sequence identifier and si is a sequence. 

A tuple <sid, si> is said to contain a sequence 𝛼 if 𝛼 is a sub-sequence of si. If the support of sequence A is greater 
than or equal to a user-defined threshold called minimum support (min_sup), then it is called a sequential 
pattern. Since our problem also considers the temporal data, we incorporate timestamps explicitly in the database 
and introduce new definitions.  

 
Recalling the timed sequential pattern mining problem[9] , A timed event is a pair e = (t, I), where I am an 

itemset that occurs at the timestamp t. We use e. t and e.I to indicate, respectively, the itemset I and the timestamp 
t associated with the event e. The list of events that is sorted in the timestamp order is called a timed sequence 
TS = <{e1}, {e2}, ... , {ek}>, such that ei.x ⊆ I (1 ≤ i ≤ k). A timed sequence database TSDB is a set of sequences 
<TS_id, TS>, where TS_id is a timed-sequence identifier and TS is a timed sequence. 

 
A sequence A is called a timed sequential pattern TSP if and only if it is a sequential pattern and 

accompanied by temporal relationships 𝜏i between item sets where it represents any descriptive statistic, such 
as an average of transition time or range, calculated based on the values of the delta 𝛥. TSP is denoted as: TSP = 
<{I0} [𝜏1] {I1} [𝜏2] {I2}…… [𝜏n] {In}>. For brevity, in the rest of this paper, when we mention a pattern, we refer 
to a timed sequential pattern. 

 

Patient 
ID Timed Sequence 

P1 <{5,TC1,BPC3,CC1},{12,TC1,BPC2,CC1},{31,TC1,BPC1,CC1},{35,TC2,BPC5,CC2 }> 
P2 <{2,TC1,BPC1, CC1}, {19,TC1,BPC3, CC2}, {25,TC1, BPC5, CC1}> 
P3 <{21,TC1,BPC3, CC2}, {25,TC1,BPC2, CC1}, {32, TC2,BPC3,CC2} > 

P4 <{10,TC1,BP2, CC2}, {20,TC1,BPC2, CC2}, {30,TC2,BPCC3, C2}> 

Fig.9. Updated Timed Sequence Database for Case 4.2 

 

 



Example 1. (Running Example) The Timed Sequence Database shown in Fig. 10 is used as an illustrative 
example. For simplicity, we use letters to represent items, each corresponding to a property of an object in the 
database (e.g., temperature and blood pressure for patients), and integers to represent timestamps, indicating when 
those properties were recorded. In this example, there are four timed sequences labeled TS1 to TS4. Each timed 
sequence consists of a set of events ordered by their timestamps. For instance, TS1 includes two events: the first 
event {5, a, b}, which occurred at timestamp 5, followed by the second event {12, d, g}, which occurred at 
timestamp 12. 

Let us assume the min-sup =50%; since the support of sequence A= <{a}{b}> is 50%, the sequence is a 
sequential pattern. The delta Δ is the difference between the timestamps of two events in each timed sequence in 
database, and it is calculated as follows:  

 In TS3, {a} occurs at timestamp 2, and {b} occurs at timestamp 19. Time difference: 19–2 = 17.  
• In TS4, {a} occurs at timestamp 10, and {b} occurs at timestamp 19. Time difference: 19 − 10 = 9. 
• TS4 also includes another {b} at timestamp 30 following the same {a} at timestamp 10. Time difference: 
30 − 10 = 20 
• From these observations: minimum time is 9 and maximum time is 20. Thus, the final timed sequential 
pattern is: <{a} [9, 20] {b}>.  
In this paper, we assume that a user chooses the temporal relation to be presented as a range of time [min, 

max]. Thus, the timed sequential pattern version is <{a} [9, 20] {b}>.  
 

3. Related Works 

In this section, we review state-of-the-art techniques for extracting sequential patterns from dynamic 
databases. The problem of sequential pattern mining was first introduced in [1] , where several algorithms were 
proposed to enhance the performance of pattern discovery. We categorize the current techniques into two groups 
based on the type of sequence database they address: incremental and progressive. An incremental database refers 
to a setting where new data is continuously added, while a progressive database allows both the addition of new 
data and the removal of obsolete data. 

One of the earliest approaches developed in the field of Incremental Sequential Pattern Mining (ISPM) is 
FastUP[10], which is based on the GSP [4] technique with enhancements for support counting and candidate 
generation. Prior to generating and validating candidates, the algorithm applies a pruning method that leverages 
information from previous mining results to determine sequence thresholds. It also incorporates efficient filtering 
techniques during support counting and minimizes the generation of unnecessary candidate sequences. These 
improvements result in better time and space efficiency compared to traditional sequential pattern mining 
algorithms. Similarly, ISM [11] builds upon the SPADE [7] approach and focuses on maintaining a sequence 
lattice from the previous database. This lattice contains both frequent sequences and those in the negative border, 
which helps in efficiently updating the mined patterns. During the initial scan of the database, ISM performs 
lattice pruning and identifies negative border sequences before generating new frequent sequences using the 
SPADE methodology. Due to the high computational cost of ISM, the IUS algorithm [12] was introduced as a 
more efficient alternative, also drawing from the SPADE approach. IUS reuses frequent and negative border 
sequences from the original database and introduces a new threshold, called the minimum support of negative 
border sequences (min_nbd_supp), to better manage memory and computational resources compared to ISM. 

In [13] , the authors proposed GSP+ (Generalized Sequential Pattern Plus) and MFS+ (Maximal Frequent 
Sequence Plus), introducing the concept of sequence difference to represent changes between two sequences. This 
concept is used to update frequent sequences incrementally. GSP+ begins by identifying frequent sequences in 
the initial database using the GSP algorithm. When the database is updated with new transactions or modifications, 
GSP+ incrementally updates the frequent sequences without recomputing everything from scratch. By leveraging 
sequence differences, the algorithm efficiently focuses only on the changes rather than reprocessing the entire 
database. Similarly, MFS+ starts by identifying maximal frequent sequences—sequences that are frequent and 
cannot be extended without becoming infrequent—using the MFS algorithm. When updates occur, MFS+ 

Timed Sequence ID Timed Sequence 

TS1 < {5, a, b}, {12, d, g}> 
TS2 < {21, e, g}> 
TS3 < {2, a}, {19, a, b}, {25, d}> 
TS4 < {10, a}, {19, b, f}, {20, d}, {30, b}> 

 
Fig. 10. An Example of Timed Sequence Database 



incrementally updates these sequences by applying the sequence difference concept, avoiding full re-computation. 
For incremental discovery of sequential patterns, BSPin [14] adopts a backward mining approach and introduces 
the concept of stable sequences, which are patterns whose support counts remain unchanged in the updated 
database. Candidate sequences are generated through backward extensions from 1-patterns. Then, (k+1)-
sequences are generated recursively from k-patterns, and their frequencies are evaluated. Stable sequences are 
excluded from this support-counting process, reducing computational overhead. Furthermore, BSPin proved that 
any extension of a stable sequence is also stable, enabling the algorithm to skip unnecessary computations and 
further accelerate the incremental mining process. 
The ISPTAR algorithm (Incremental Sequential Pattern mining for Temporal Association Rules) [15] was 
designed to mine multivariate temporal association rules by combining historical and incremental data in dynamic 
datasets. It addresses the inefficiency of repeatedly scanning the historical database by retaining previously 
discovered patterns and merging them with new incoming data. To identify temporal relationships within 
multivariate time series, ISPTAR first generates a temporal sequence dataset from the temporal transaction dataset, 
which is produced through fuzzy discretization of the multivariate time series. Then, it considers both the valid 
time period of each pattern and the temporal relationships among the pattern’s elements to mine fuzzy temporal 
sequential patterns. This mining process is based on the PrefixSpan algorithm. Finally, ISPTAR constructs fuzzy 
temporal association rules from the mined sequential patterns to reveal associations between different attributes 
across time. In [16], IncSeq addressed the challenge of mining frequent serial episodes over data streams. It 
initialized the parameters: stream window W, data stream, and tree data structure. A tree node is a 4-tuple 
consisting of: sequential pattern (α), list of minimal occurrences, which is the itemsets IDs, of α in the stream (I), 
descendant nodes representing patterns of size ǁαǁ + 1 (S), and descendant nodes representing patterns of size ǁαǁ 
+ 1 with specific relationships (C). When the algorithm receives a new itemset from the data stream, two actions 
are triggered: (1) occurrences associated with the first itemset in the window are deleted; and (2) patterns and 
occurrences associated with the new itemset are added. Most of the computational effort is incurred by the addition 
phase, which consists of three sub-steps: finishing the lists of occurrences; merging sub-itemsets of the new 
itemset into the current tree; and trimming nodes with non-frequent patterns. The IncSeq has some drawbacks. 
The tree structure used in IncSeq to represent sequential patterns, and their occurrences may require significant 
memory and computational resources to maintain and update, especially as the size of the tree grows with the 
influx of new data. Also, the performance of IncSeq may be sensitive to parameter settings such as window size, 
minimal support threshold, and other configuration options, requiring careful tuning for optimal results. 

Due to the increasing size of big data, traditional sequential pattern mining algorithms often suffer from 
memory limitations and decreased performance. MR-INCSPM [17] addresses these challenges by leveraging the 
MapReduce framework to efficiently process large datasets and ensure scalability. In its first phase—the map 
phase—the algorithm employs a backward mining strategy [14] for discovering sequential patterns from an 
incremental database. It also introduces a novel data structure called CRMAP, which maps items in an input 
sequence to their preceding items, facilitating effective candidate generation and pruning to reduce the search 
space. The second phase handles the processing of these candidate sequences, performs support counting, and 
identifies frequent sequential patterns. Experimental results demonstrate that MR-INCSPM significantly 
outperforms non-incremental MapReduce-based algorithms in terms of execution speed and achieves linear 
scalability with respect to data size. 

To mine sequential patterns in progressive databases, researchers proposed an algorithm called PISA 
(Progressive mIning of Sequential pAtterns)[18]. This algorithm focuses on discovering sequential patterns within 
a recent time frame of interest by handling both the insertion of new data and the removal of obsolete data. The 
concept of a Period of Interest (POI) is used to define a sliding time window for analysis. Only sequences 
containing elements with timestamps within the POI are retained for mining, while older sequences are pruned, 
ensuring that only the most relevant and recent data contribute to the pattern discovery process. To manage 
sequences in this dynamic environment, PISA uses a data structure known as the Progressive Sequential Tree (PS-
tree). The PS-tree is initialized to store sequences within the POI, and when new data arrive at timestamp t+1, the 
tree is traversed in post-order. During this process, outdated elements are removed, existing sequences are updated, 
and new elements are inserted into the PS-tree. A parallel version of this algorithm, called Parallel Progressive 
Sequential Pattern (PPSP), has also been implemented on a GPU platform to improve performance [19].  
Additionally, the work in [20] highlighted a gap in existing sequential pattern mining algorithms: the lack of a 
metric to evaluate the significance of discovered patterns. They proposed assigning weights to timestamps, where 
the presence or absence of a pattern at a given time helps determine its importance, enhancing practical utility in 
real-world applications.  

A novel technique called Wtd_Seq_Pat was introduced to address the challenge of quantifying the 
importance of extracted sequential patterns by assigning weights based on their temporal spread. Instead of relying 
solely on raw support counts, Wtd_Seq_Pat considers the duration over which a pattern occurs, adjusting the 
support value to better reflect its true significance. To implement this, a weighted M-ary tree (WM-ary tree) is 
used to represent sequences over time. As the algorithm processes each timestamp, it traverses the tree to insert 



new elements and update existing nodes according to their occurrences, ultimately identifying frequent sequential 
patterns. Given the limitations of traditional algorithms in handling large-scale data, a Distributed Progressive 
Sequential Pattern mining algorithm (DPSP) was proposed in [21] To further address issues of scalability, noise, 
and non-stationary data.  

To further address issues of scalability, noise, and non-stationary data, [22] proposed HDCL, a hybrid 
approach that integrates deep learning with sequential pattern mining in progressive databases. The technique 
applies Discrete Wavelet Transform (DWT) to preprocess non-stationary data, transforming it into time-series 
form by decomposing it into approximation and detail coefficients. These coefficients represent the low- and high-
frequency components of the data, respectively. A Convolutional Neural Network (CNN) is then used to mine 
frequent sequence patterns from the transformed data, offering robustness against noise and improved pattern 
recognition in evolving data environments. 

While incremental and progressive sequential pattern mining algorithms can identify the order of successive 
events, they do not capture the time intervals between those events. However, many existing algorithms that 
incorporate temporal relations within itemsets, such as those presented in [23], [24], [25], [26]and [27], are 
designed to mine timed sequential patterns from a static timed sequence database (TSDB). Consequently, if any 
updates occur in the database, such as the addition or removal of sequences, these algorithms must be re-executed 
from scratch to discover the updated set of timed sequential patterns. This complete reprocessing can be 
computationally expensive, particularly when dealing with large-scale datasets. 

To the best of our knowledge, no existing algorithm can discover the complete set of timed sequential 
patterns from a dynamic timed sequence database. To address this gap, MinitsDays is proposed to efficiently 
extract the full set of timed sequential patterns from a dynamic timed sequence database. 

4. The proposed Algorithm: MinitsDays 

4.1. Overview of MinitsDays 

MinitsDays is a technique for discovering the complete and updated set of timed sequential patterns from a 
dynamic database. The core idea is to leverage historical information obtained from previous executions of the 
algorithm and update this information based on changes that have occurred in the database. In [14],  a novel 
methodology called backward mining was introduced, which contrasts with the traditional forward mining 
approach. In forward mining, when a k-pattern is discovered, one item is appended to the end of the pattern to 
generate a (k+1)-candidate. In backward mining, however, one item is appended to the beginning of the pattern 
to generate a (k+1)-candidate. Backward mining introduces the concept of stable sequences—subsequences whose 
support counts remain unchanged in the updated database. By identifying and eliminating these stable sequences, 
the algorithm optimizes the support counting process, significantly improving pattern maintenance. This approach 
prunes all stable sequences and their super sequences, thereby minimizing the need for repeated database 
projections and reducing computational overhead. The correctness of this property was approved in [14].  
MinitsDays adopts this property and uses two data structures to store and manage all necessary data from the 
current TSDB. It traverses these structures to update the set of timed sequential patterns. The 1-sequence data 
structure contains all distinct 1-items in the timed sequence database. Each 1-item is associated with its support 
count and a list of all timed sequence IDs that contain this item, along with their corresponding timestamps, as 
illustrated in Fig. 11. 

 
The 1-sequence data structure for the timed sequence database in Fig. 10 is shown in Fig. 12. For instance, 

item a appears in three timed sequences: TS1, TS3, and TS4. In TS1, item a occurs in the first event at timestamp 
5. In TS3, it appears in two events: the first at timestamp 2 and the second at timestamp 19. This data structure is 
similarly created for all other distinct items, b, d, e, f, and g, as shown in Fig. 12. 

Timed Sequential Pattern TSP : Support count 

Timed Sequence ID1: List of timestamps of an event contain the item  
Timed Sequence ID2: List of timestamps of an event contain the item  

 
….. 
 

Timed Sequence IDi: List of timestamps of an event contain the item  
 

Fig. 11: 1-sequence Data Structure for an item  



The second data structure is the Timed Sequential Patterns Suffix Tree (TSS-tree). This tree contains only the 
timed sequential patterns, meaning those patterns that satisfy the minimum support (min_sup) condition. Each 
node in the TSS-tree follows the same structure as the 1-sequence data structure. Specifically, every node includes: 
the pattern itself, its support count, and a list of all occurrences of that pattern in the database. The children of a 
node represent the backward extensions of that pattern. For example, the timed sequential patterns a [ ] b and (a, 
b) share the suffix b. In other words, all candidates derived from item b were generated using the backward mining 
methodology. Among these candidates, a [ ] b and (a, b) are frequent, and therefore, they were added to the tree 
along with their corresponding information: support count and all positions in the database where these patterns 
occur. Fig.13. shows the structure of the TSS-tree.  
 
MinitsDays algorithm receives the following inputs:  
o Minimum support threshold (min_sup), which is a user-defined parameter. 
o 1-Sequence Data structure (1SD), which stores all required information of distinct itemsets during the entire 

life of the timed sequence database.  
o Previous Timed Sequential patterns Suffix tree (Prev_TSS_tree), which a tree contains all timed sequential 

patterns that are discovered from the previous timed sequence database.  
o List of Updated Timed Sequences (Updated_TS_List), which are either inserted into or deleted from the 

TSDB.  
o Type of updating that has been done (Update_Type), which is an insertion or deletion operation.  

 
During the first execution of MinitsDays, the database is treated as a static version. MinitsDays reads the 

initial list of timed sequences (TS) as the first version of the Timed Sequence Database (TSDB). It then builds the 
1-Sequence data structure and the TSS-tree from scratch to discover the initial set of timed sequential patterns. 
For all subsequent executions, MinitsDays operates on a dynamic TSDB, utilizing previously stored data in the 
1-Sequence Data Structure (1-SD) and the previous TSS-tree (Prev_TSS_tree). The following steps are then 
performed: 

 
1. Determine the type of change (Set Update_Type to either insertion or deletion). 
2. Check for existing data structures. If the data structures do not exist, this indicates the algorithm is being 
executed for the first time, so they must be created. 
3. Read the list of updated timed sequences and load the Updated_TS_List. If Update_Type is insertion, 
call the handle_insertion() function. If it is deletion, call the handle_deletion() function. 
4. Modify the content of the data structures according to the type of change. If a new distinct item is 
introduced through insertion, add it to the 1-sequence data structure. If an existing item becomes infrequent 
due to deletions, remove it from the TSS-tree along with all its derived patterns, and update accordingly. 
5. Traverse the updated TSS- tree to to generate the complete and up-to-date set of timed sequential patterns. 
 
MinitsDays’s pseudo-code is presented in Fig.14. 
 
 
 
 

a: 3  b: 3  d: 3  e: 1  f: 1  g: 2 
TS1: {5} 
TS3: {2,19} 
TS4: {10} 

 TS1: {5} 
TS3: {19} 
TS4: {19,30} 

 TS1: {12} 
TS3: {25} 
TS4: {20} 

 TS2: {21} 
 

 TS4: {19} 
 

 TS1: {5,12} 
TS2: {21} 

 

Fig.12. 1-sequence Data Structure for all Items in Timed Sequence Database Shown in Fig.10. 



 

 
 
 
 
 
 
 
 

Algorithm 1: MinitsDays 
Input: min_supp - portion of required occurrences for each item 
             1SD - 1-Sequence data structure 
             Prev_TSS_tree - Previous Timed Sequential Pattern Suffix Tree 
             Updated_TS_List - List of updated timed sequences 
             Update_Type - Type of update (Insertion or Deletion) 
  
Output: NTSP – New set of Timed Sequential Patterns    
                New_TSS_tree  – New Timed Sequential Suffix Tree 
                New_1S - New 1-Sequence Data structure 
  
   // Possible scenarios 
1.   if 1SD.length == 0: 

 

Fig.13. TSS-Tree Structure 

TSP1 : Support count

List of Timed Sequences TSs. 

Each TSP has list of 
timestamps of event containing 
TSP.  

TSP2 : Support count 

List of Timed Sequences TSs. 

Each TSP has list of 
timestamps of event 
containing TSP.  

TSP3 : Support count 

List of Timed Sequences TSs. 

Each TSP has list of 
timestamps of event 
containing TSP.  

Root

TSP4 : Support count 

List of Timed Sequences TSs. 

Each TSP has list of 
timestamps of event 
containing TSP.  

TSP5 : Support count 

List of Timed Sequences TSs. 

Each TSP has list of 
timestamps of event 
containing TSP.  

TSP6 : Support count 

List of Timed Sequences TSs. 

Each TSP has list of 
timestamps of event 
containing TSP.  

…….

…….

…….

…….



2.       if Prev_TSS_tree.length == 0:  
3. 1SD= Updated_TS_List   // Start the construction treating Updated_TS_List as the 

only data available  
4.       endif 
5.    else: 
6.       if Update_Type == "Insertion":  
7.          New_1S, New_TSS_tree = Handle_Insertion(1SD, _TS_List) 
8.       else if Update_Type == "Deletion": 
9.           New_1S, New_TSS_tree = Handle_Deletion(1SD, Updated_TS_List) 
10.       endif 
11.    endif 
  
12.    for i = 0 to Updated_TS_List.length:         
13.       for each event in Updated_TS_List[i]: 
14.  for each item in event.values()[1: ] //except the first one because it the  timestamp 
15.               if item not in  1SD.keys: // if the item not in 1SD 
16.                   1SD.add(item, new Map() ) 
17.                   1SD[item].support_count = 0 
18.                   1SD[item].info = new Map() 
19.               endif 
20.   if i not in 1SD[item].keys(): // if item appears in a sequence and it not in the list of 

item 
21.                   1SD[item].support_count += 1  
22.                   1SD[item].info[i] = new Array() 
23.               endif 
24.               1SD[item].info[i].add(event[0]) // because it’s the actual timestamp 
25.           endfor 
26.       endfor 
27.    endfor 
  
28.    NTSP = new Array() 
29.    for key in 1SD.keys(): 
30.       if 1SD[key].support_count > = min_supp 
31.           New_TSS_tree.root.add(key, 1SD[key]) 
32.           NTSP.add(key) 
33.       endif 
34.    endfor 
  
    // Add the descendants of the root 
35.    New_TSS_tree, 1SD= Get_Descendants(min_supp, Updated_TS_List, New_TSS_tree, 1SD,   

New_TSS_tree.root.children(), NTSP) 
   
36.    return NTSP, New_TSS_tree, New_1S 
  
  
37. Algorithm Handle_Insertion(min_supp, 1SD, Prev_TSS_tree, Updated_TS_List) 
  
     //1. Update 1-Sequence Data Structure based on the Updated_TS_List 
38.     for each TS in Updated_TS_List: 
39.         for each event in TS: 
40.             for each item in event: 
41.                 if item not in 1SD: 
42.                     Add item to 1SD with count 1 and the corresponding timestamp 
43.                 else 
44.                     Update the count and add the new timestamp for the item in 1SD 
45.                 endif 
46.             endfor 
47.         endfor 
48.     endfor 
  



     //2. Using the updated 1-Sequence Data Structure, rebuild the TSS tree 
49.     New_TSS_tree = Update_TSS_tree(Prev_TSS_tree, 1SD, min_supp) 
  
50.     return 1SD, New_TSS_tree 
  
51. Algorithm Handle_Deletion(min_supp, 1SD, Prev_TSS_tree, Updated_TS_List) 
  
     //1. Update 1-Sequence Data Structure based on the Updated_TS_List 
52.     for each TS in Updated_TS_List: 
53.         for each event in TS: 
54.             for each item in event: 
55.                 if item in 1SD: 
56.                    Decrease the count of item in 1SDby 1 and remove the corresponding timestamp 
57.                     if item.count == 0:  
58.                         1SD.remove(item)  
59.                     endif 
60.                 endif 
61.             endfor 
62.         endfor 
63.     endfor 
  
     //2. Using the updated 1-Sequence Data Structure, rebuild the TSS tree 
64.     New_TSS_tree = Update_TSS_tree(Prev_TSS_tree, 1SD, min_supp) 
  
65.     return 1SD, New_TSS_tree 
  
66. Algorithm Update_TSS_tree(1SD)  
     // Use the previous TSS tree 
67.     Updated_TSS_tree = Prev_TSS_tree 
  
     // List of infrequent items to remove 
68.     infrequentItems = new Array() 
  
   // Update or add items from 1SD to the TSS tree based on their support count 
69.   for item in 1SD.keys: 
70.       if 1SD[item].count >= min_supp: 
71.           if Updated_TSS_tree.contains(item): 
72.              Updated_TSS_tree.update(item, 1SD[item])  // Update existing items 
73.           else: 
74.              Updated_TSS_tree.add(item, 1SD[item])  // Add new items 
75.          endif 
76.       else: 
77.           if Updated_TSS_tree.contains(item): 
78.                infrequentItems.append(item) 
79.           endif 
80.       endif 
81.     endfor 
  
     // Remove infrequent items and their associated patterns 
82.     for item in infrequentItems: O(ind_n) 
83.         Updated_TSS_tree.remove(item) 
     
         // Now, search for patterns containing the infrequent item and remove them 
84.         for pattern in Updated_TSS_tree.patternsContaining(item): 
85.             if pattern.support_count < min_supp: 
86.                 Updated_TSS_tree.remove(pattern) 
87.             endif 
88.         endfor 
89.     endfor 
90.     return Updated_TSS_tree 



  
91. Algorithm Get_Descendants(min_supp, Updated_TS_List, New_TSS_tree , 1SD, 

add_on_keys, NTSP) 
     
92.     changed = False 
93.     for key in add_on_keys: 
94.         for last_layer_key in New_TSS_tree.last_layer().keys():  
              // Add the new keys in form 'a,b, ...' //  
95.             if "," in key:  
96.                tmp_map = new Map() 
97.                tmp_map.support_count = 0 
98.                tmp_map.info = new Map() 
  
99.                  for each item in 1SD: 
100.                   check = true 
101.                    for each key, timestamps in item.keys_and_values()   
102.  if TSS_TREE.get(last_layer_key).times Ç timestamps == Æ ||      

last_layer_key == key   
103.                               check = false 
104.                               break 
105.                        endif 
106.                         
107.                         if check: 
108.                             if key not in tmp_map.info.keys(): 
109.                                 tmp_map.key = new Array() 
110.                                 tmp_map.support_count += 1 
111.                              endif 
112.                              tmp_map.key.append(tiemstamps)  
113.                         endif 
114.                     endfor 
115.                   endfor 
116.                   if tmp_map.support_count >= min_supp: 
117.                      changed = true 
118.                       NTSP.add (last_layer_key+key)    
119.                       New_TSS_tree.get(key).add_child(last_layer_key + key, new_map) 
120.                   endif 
                    
                // Add the new keys in form 'a[]b[] ...'  
121.               else 
122.                  key_sequence = new Array() 
123.                  key_sequence.append(last_layer_key) 
124.                  key_sequence += key.split([...])  
125.                  tmp_map = new Map() 
126.                  tmp_map.support_count = 0 
127.                  tmp_map.info = new Map() 
128.                  min = Integer.Max_Value 
129.                  max = Integer.Min_Value 
130.                  for each item in 1SD:    
131.                    for each key, timestamps in item.keys_and_values(): 
132.                      if key in TSS_TREE.get(last_layer_key).keys:  
133.                         for t in TSS_TREE.get(last_layer_key).get(key).times: 
134.                           if t  < min(timestamps): 
135.                               if key not in tmp_map.info.keys(): 
136.                                 tmp_map.key = new Array() 
137.                                 tmp_map.support_count += 1 
138.                               endif 
139.                               tmp_map.key.append(t + "," + min(timestamps)) 
140.                               min = minimum(min, min(timestamps)- t) 
141.                               max = maximum(max, max(timestamps)- t)  
142.                            endif 



143.                          end for 
144.                       endif 
145.                      endfor 
146.                   endfor 
147.                     if min != -inf and tmp_map.support_count >= minimum_supp: 
148.                       changed = true 
149. New_TSS_tree.get(key).add_child(last_layer_key + '[' + min + ',' + max + 

']' + item, new_map) 
150.                       NTSP.add (last_layer_key + '[' + min + ',' + max + ']' + item)  
151.                     endif 
152.                 endif 
153.              endfor 
154.         endfor 
155.     if not changed: 
156.         return New_TSS_tree , 1SD 
157.     else 
158.         returnGet_Descendants(min_supp,Updated_TS_List,New_TSS_tree,1SD,       

New_TSS_tree .root.children(), NTSP) 
159.     endif 
  

Fig.14. MinitsDays’s pseudo-code 
 

4.2 The Details of MinitsDays Algorithm 

The five steps outlined in Section 4.1 will now be explained in detail using the TSDB shown in Fig. 10. 
During the first execution of the algorithm, both the 1-Sequence Data Structure (1SD) and the previous TSS-tree 
(Prev_TSS_tree) are empty (corresponding to Steps 1 and 2). The list of updated timed sequences (TS) 
corresponds to the initial version of the timed sequence database presented in Fig. 10. The algorithm handles this 
scenario in the same way it handles a static timed sequence database. It begins by scanning the Updated_TS_List 
and building the 1-Sequence Data Structure (1SD), as shown in Fig. 12. The 1SD includes all distinct items, 
regardless of whether they are frequent in the TSDB, along with their support counts and occurrence positions 
(Lines 12–27). Next, the support count of each distinct item is compared against the minimum support threshold 
(min_sup). Items that meet or exceed min_sup are added to both: 

o The New Timed Sequential Patterns (NTSP) set, as 1-item timed sequential patterns, and 
o The Timed Sequential Pattern Suffix Tree (TSS-tree) (Lines 28–34), as shown in Fig. 15. 

Then, each frequent item is treated as a suffix, and all possible 2-item candidate patterns are generated by calling 
the function Get_Descendants() (Line 35). Assuming min_sup = 50%, the resulting TSS-tree is shown in Fig. 15, 
and the NTSP set becomes: NTSP = { <{a}>, <{b}>, <{d}>, <{g}> }. 

 
Next, to determine which of the 2-candidates, generated by the Get_Descendants() function (Lines 91–115), 

qualify as Timed Sequential Patterns, the algorithm evaluates each candidate against the minimum support 
threshold (min_sup) (Line 116). If a candidate is found to be frequent, it is added to both the NTSP and the TSS-
tree, but only after its temporal relationship is calculated (Lines 116–129). For example, after generating all 2-
candidates from the current NTSP, the following patterns qualify as 2-item timed sequential patterns: <{a} [ ] 
{b}>, <{a, b}>, <{b} [ ] {d}>, <{a} [ ] {d}>. The temporal relation is then calculated for those patterns that 

 
Fig.15. TSS-Tree for 1-Timed Sequential Patterns 



exhibit a sequential relationship. For instance, the temporal relation for the pattern <{a} [ ] {b}> is computed as 
follows based on the TSDB shown in Fig. 10: 

• In TS3, {a} occurs at timestamp 2, and {b} occurs at timestamp 19. Time difference: 19–2 = 17.  
• In TS4, {a} occurs at timestamp 10, and {b} occurs at timestamp 19. Time difference: 19 − 10 = 9. 
• TS4 also includes another {b} at timestamp 30 following the same {a} at timestamp 10. Time difference: 
30 − 10 = 20 
• From these observations: minimum time is 9 and maximum time is 20. Thus, the final timed sequential 
pattern is: <{a} [9, 20] {b}>.  

Accordingly, the NTSP will be = {<{a}>, <{b}>,   <{d}>,   <{g}>, <{a} [9, 20] {b}>, <{a, b}>, <{b} [1,8] {d}>, 
and <{a} [6,23] {d}> } and the TSS-tree is updated as shown in Fig.17. 

 
Afterward, the algorithm proceeds to generate 3-candidate patterns. It evaluates each candidate to determine 
whether it qualifies as a 3-item timed sequential pattern by checking its support against the defined min_sup. For 
each frequent 3-pattern, the algorithm calculates the temporal relations between the itemsets, ensuring accurate 
time intervals between events. These valid timed sequential patterns are then inserted into the TSS-tree, while 
infrequent patterns are discarded. The algorithm continues this iterative procedure, generating candidates, filtering 
by minimum support, calculating temporal relations, and updating the TSS-tree, until no further candidates can 
be produced. At this termination point, the complete set of valid timed sequential patterns is finalized. The 
structures of 1-SD and the TSS-tree are now complete. The final TSS-tree is illustrated in Fig.17, and the resulting 
NTSP (New Timed Sequential Patterns) set is: NTSP = { <{a}>, <{b}>, <{d}>, <{g}>, <{a} [9, 20] {b}>, <{a, 
b}>, <{a} [1, 8] {d}>, <{b} [6, 23] {d}> .  

 

 
Fig.16: Updated TSS-Tree 

 
 



 
 
After the first execution of the algorithm, the 1-SD and TSS-tree are constructed and are no longer empty. 

Now, consider an update to the Timed Sequence Database (TSDB) as illustrated in Fig.10, where new timed 
sequences have been added, as shown in Fig.18. The algorithm will handle this update as an insertion operation, 
and the following inputs are provided: 

• Min_sup = 50% 
• 1SD as shown in Fig.12. 
• Previous TSS-Tree as shown in Fig.17. 
• Updated_TS_List: {TS5, TS6, TS7}, containing only the newly added timed sequences 
• Update_Type: insertion 
 
MinitsDays begins by reading the Updated_TS_List and the Update_Type and proceeds to update the 1-

Sequence Data Structure (1SD) accordingly. Since the type of update operation is insertion, the algorithm calls 

 

 
Fig.17. Final TSS-Tree 

 

 
 

a : 3
TS1: (5)
TS3: (2)(19)
TS4: (10)

b : 3
TS1: (5)
TS3: (19)
TS4: (19)(30)

d : 3
TS1: (12)
TS3: (25)
TS4: (20)

g : 2
TS1: (5)(12)
TS2: (21)

Root

a[9,20]b : 2
TS3: (2,19)
TS4: (10,19)

(10,30)

(a,b) : 2
TS1: (5)
TS3:(19)

b[1,8]d : 3
TS1: (5,12)
TS3: (19,25)
TS4: (19,20)

a[6,23]d : 3
TS1: (5,12)
TS3: (2,25)

(19,25)
TS4: (10,20)

a[9,17]b[1,6]d: 2
TS3: (2,19,25)
TS4:(10,19,20)

(a,b)[6,7]d: 2
TS1: (5,12)
TS2:(19,25)

ID Timed Sequence 
TS1 <{5, a, b, g}, {12,d, g}> 
TS2 <{21, e, g}> 
TS3 <{2, a}, {19, a, b}, {25, d}> 
TS4 <{10, a}, {19, b, f}, {20,d}, {30, b}> 
TS5 <{31, f}, {46, f}> 
TS6 <{35, f}, {40, b, f}> 
TS7 <{31, b, f}, {34, f}> 

Fig.18. UTSDB for Timed Sequence Database Shown in Fig.10. 

 



the function Handle_Insertion() (Line 37) to process the new timed sequences and incorporate them into the 
existing data structures. For example, All the newly added timed sequences do not contain item a; therefore, its 
information in the 1SD remains unchanged. However, item b does appear in the Updated_TS_List, so its 
corresponding information in the 1SD is updated accordingly, as shown in Fig. 19.  

Next, the TSS-tree must be updated based on different scenarios. In the first scenario, the algorithm checks 
the support count of each distinct item. If an item becomes infrequent (i.e., its support falls below min_sup), it is 
removed from the TSS-tree along with all of its child nodes. This follows the Apriori principle, which states that 
if a pattern is infrequent, all of its supersets must also be infrequent. For example, item g becomes infrequent due 
to its updated support count of 3, which is below the threshold. As a result, item g is removed from the TSS-tree, 
as illustrated in Fig. 20. 

Another scenario occurs when the support count of an item remains unchanged. In this case, its backward 
extensions are considered stable, and thus, do not need to be modified. This behavior follows the backward mining 
strategy described in[14]. For example, the support counts for items a and d remain unchanged. As a result, all of 
their child nodes in the TSS-tree are preserved without updates, as shown in Fig. 20. 

However, if the support count of an item changes, the corresponding node in the TSS-tree, along with all its 
backward extensions, must be updated. For instance, the support count of item b increases from 3 to 5. As a result, 
all of b’s backward extensions are re-evaluated, and new candidates are generated by calling the 
Get_Descendants() function (Line 35). MinitsDays then compares the support count of each candidate against the 
defined min_sup. If a candidate is frequent, the algorithm calculates its temporal relation, using the same 
procedure applied earlier to the pattern <{a} [ ] {b}>, to determine the appropriate time intervals. In this example, 
the previous timed sequential patterns with suffix b were infrequent (support count = 2), and this remains 
unchanged even after the new timed sequences are added to the TSDB. Furthermore, the newly generated 
candidates also fail to meet the min_sup threshold. Consequently, no new backward extensions are appended to 
the TSS-tree, and the existing infrequent extensions of item b are removed, as shown in Fig. 20. 

The final scenario occurs when a previously infrequent distinct item becomes frequent. In this case, the item 
must be added to the TSS-tree, and the algorithm must generate all candidate patterns involving this item, starting 
from 1-candidates to 2-candidates, and so on, until no more candidates can be produced. In our example, item f 
was initially infrequent with a support count of 1. After the addition of three new timed sequences, its support 
count increases to 4, which meets the min_sup threshold. MinitsDays responds by updating the TSS-tree through 
a call to the Update_TSS_tree() function (Line 49). As a result, item f and its corresponding timed sequential 
patterns are inserted into the TSS-tree, as shown in Fig. 20. 

Once no further candidates can be generated, MinitsDays outputs: the updated set of new timed sequential 
patterns (NTSP), the new TSS-tree, and the updated 1-Sequence Data Structure (1SD). In this example, the final 
output is: NTSP = { <{a}>, <{b}>, <{d}>, <{f}>, <{a} [1, 8] {d}>, <{b} [6, 23] {d}>, <{b} [6, 23] {d}> }. The 
updated TSS-tree are illustrated in Fig. 20. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a: 3  b: 5  d: 3  e: 1  f: 4  g: 2 
TS1: {5} 
TS3: {2,19} 
TS4: {10} 

 TS1: {5} 
TS3: {19} 
TS4: {19,30} 
TS6: {40} 
TS7: {31} 

 TS1: {12} 
TS3: {25} 
TS4: {20} 

 TS2: {21} 
 

 TS1: {19} 
TS5: {31,46} 
TS6: {35,40} 
TS7: {31,34} 

 

 TS1: {5,12} 
TS2: {21} 

 

Fig.19: 1-Sequence Data Structure for Timed Sequence Database Shown in Fig.18. 

 
Fig.20. Final TSS-Tree 

 

a : 3
TS1: (5)
TS3: (2)(19)
TS4: (10)

b : 5
TS1: (5)
TS3: (19)
TS4: (19)(30)
TS6: (40)
TS7: (31) 

d : 3
TS1: (12)
TS3: (25)
TS4: (20)

f : 4
TS4: (19)
TS5: (31)(46)
TS6: (35)(40)
TS7: (31)(34)

Root

b[6,23]d : 3
TS1: (5,12)
TS3: (2,25)

(19,25)
TS4: (10,20)

f[3,15]f : 3
TS5: (31, 46)
TS6: (35,40)
TS7: (31,34)

a[1,8]d : 3
TS1: (5,12)
TS3: (19,25)
TS4: (19,20)



4.3 Complexity Analysis of MinintsDays 

In this section, we present our analysis of the worst-case computational complexity of MinitsDays.  
Fig. 14 shows the pseudocode of the algorithm.  The variables of the time complexity analysis of Minits-AllOcc 
are listed as follows:  

o N: Number of timed sequences in the Timed Sequence Database (TSDB), 
o L: the maximum length of a timed sequence (i.e., the maximum number of events per sequence), 
o M: Number of distinct individual items across all sequences in TSDB 
o U: Number of updated sequences involved in a dynamic modification.  
The algorithm operates in two main modes: static mining during the initial execution and dynamic mining 

during subsequent updates. In the static mining phase, the 1-Sequence Data Structure (1SD) is built (Lines 12 -
27) by scanning each of the N sequences (Line 12), each containing up to L events (Line 13), with each event 
possibly including up to M distinct items (Line 14). This leads to a time complexity of O (N * L * M) for the 
initial scan and construction of 1SD. Following this, the algorithm checks all M items to identify frequent patterns 
of length 1, requiring O(M) time, and stores them in the Timed Sequential Pattern Suffix Tree (TSS-tree), also in 
O(M) time (Line 28-34). After establishing the base of frequent patterns of length 1, the algorithm invokes a 
recursive extension process via the Get_Descendants () function (Line 35) to discover longer patterns. In the 
worst-case scenario, where all items can form patterns of maximum length L, the number of candidates grows 
exponentially to Mᴸ. For each such candidate, the algorithm may need to scan all N sequences of up to L events 
to validate support, resulting in a worst-case time complexity of O (Mᴸ * N * L) for this pattern extension phase 
(Lines 91- 159). Combining these components, the total time complexity for the static execution is O (Mᴸ * N * 
L), as this term dominates when L ≥ 2. 

In contrast, the dynamic mining phase focuses on efficiently handling updates without reprocessing the entire 
database. The first step in handling updates involves modifying the 1-Sequence Data Structure (1SD) to reflect 
the contents of the updated sequences (Lines 38 – 48 or Lines 52 -65). Each of the U sequences contains up to L 
events, and each event may include up to M items. Therefore, the time complexity for this update step is 
O(U*L*M). Next, the algorithm must update the Timed Sequential Pattern Suffix Tree (TSS-tree) (Lines 66- 90) 
to account for changes in pattern support. In the worst-case scenario, where all existing patterns may be affected 
by the updates, up to ML patterns (i.e., the maximum number of possible sequential patterns of length L) could 
require re-evaluation. For each such pattern, the support must be verified by scanning the updated U sequences, 
each of which may contain up to L events. Consequently, the worst-case time complexity for this step becomes: 
O(ML*U*L). Aggregating the two components, the total time complexity for the dynamic update phase is 
O((U*L*M) + (ML*U*L)). Since ML grows exponentially with pattern length L, and L ≥ 2 is typical in practical 
applications, the second term dominates. Thus, the total complexity simplifies to O(ML*U*L). The total 
complexity is O ((Mᴸ * N * L) + (ML*U*L)). Since U ≤ N, the final time complexity is O (Mᴸ * N * L). 
This analysis confirms that MinitsDays exhibits exponential complexity in the pattern length L, which is a 
characteristic trait of sequential pattern mining problems. However, it scales linearly with the number of sequences 
N, making it practical for large but relatively shallow databases. More importantly, during dynamic updates, the 
algorithm avoids redundant computation by isolating only the U updated sequences and the Δ affected patterns, 
ensuring that performance remains efficient in real-world scenarios where updates are typically localized. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



5. Performance Analysis 

In this section, we describe the experimental environment and present the evaluation results of testing the 
proposed algorithms on both single-core CPUs (MinitsDays) and multi-core CPUs (MMinitsDays). The 
experiments were conducted using a combination of real and synthetic datasets, with various parameters taken 
into consideration to assess the performance and scalability of both implementations. 

5.1. Competing Algorithm 

Minits-AllOcc [9] was used as a competing algorithm in this experiment. It is designed to mine timed 
sequential patterns from a static timed sequence database (TSDB). Minits-AllOcc assumes that the sequence 
database remains unchanged over time. Therefore, if any updates occur in the database content, such as adding or 
removing sequences, the algorithm must be re-executed from scratch to discover the updated set of timed 
sequential patterns. 

5.2. Experiment Setup 

All experiments were conducted on a computer equipped with a 3.20 GHz Intel(R) Core (TM) i7-8700 
CPU running 64-bit Windows. Both the MinitsDays and MMinitsDays algorithms were implemented in Java 1.8. 

 

5.3. Datasets and Experimental Parameters  

We used both real-world and synthetic datasets in our experiments. The primary real dataset is obtained from 
Oklahoma Mesonet [28] [29], a world-class network of environmental monitoring stations developed by scientists 
at the University of Oklahoma (OU) and Oklahoma State University (OSU). Established on January 1, 1994, the 
network consists of 120 stations, with at least one located in each of Oklahoma’s 77 counties. These stations 
record various environmental parameters and package the data into "observations" every 5 minutes. The 
observations are then transmitted to a central facility every 5 minutes, 24 hours a day, year-round, providing a 
rich source of time-ordered, high-frequency data for analysis. The dataset includes the following attributes: county 
ID, timestamp, air temperature, rainfall, wind, and moisture/humidity, as illustrated in Fig. 21. Prior to analysis, 
the data was discretized using well-established scales in meteorology, ensuring consistency and meaningful 
categorization of continuous values. 

For air temperature, the index heat [30] has nine categories based on the temperature degree intervals in 
Fahrenheit: T1 (extremely hot) [>54]; T2 (very hot) [53–46]; T3 (hot) [46–39]; T4 (very warm) [38–32]; T5 
(warm) [31–26]; T6 (cold) [25–0]; T7 (very cold) [0–−10]; T8 (bitter cold) [−11–−29]; and 9 (extreme cold) 
[>−30]. The recurrence interval [31] is used to categorize the rainfall based on the probability that the given 
event will be matched or exceeded in any given year. For example, there is a 1 in 50% chance that 6.60 inches 
of rain will fall in X County in a 24-hour period during any given year. The classes are: R1 (1 year) [1.16–1.36]; 
R2 (2 years) [1.37–1.69]; R3 (5 years) [1.70–1.98]; R4 (10 years) [1.99–2.36]; R5 (25 years) [2.37–2.64]; R6 
(50 years) [2.65–2.90]; and R7 (100 years) [2.90–3.15]. For wind, the Beaufort scale [47] defines 12 classes 

Station ID Weather sequence 
1 < (2014-8-23 02:53:04, 17.2, 0.25,970, 206),………, (2014-8-23 11:11:12, 17.1,0.00,970.05,191) …… > 
2 < (2008-10-23 12:45:23, 14.2,0.00,969.91,7),……., (2008-10-23 16:44:22,12.9,0.02,690.99,4) ….>  
3 … 
… … 

Fig.21.  Sequential database for the Oklahoma Mesonet dataset before discretization. 

 

 
Station ID Weather sequence 

1 < (2014-8-23 02:53:04, T6, R2,W5, H1),………, (2014-8-23 11:11:12, T6, R3,W6, H1) …… > 
2 < (2008-10-23 12:45:23, T2, R5,W12, H3),……., (2008-10-23 16:44:22, T2, R4,W11, H2) …. > 
3 … 
… … 

Fig.22.  Sequential database for the Oklahoma Mesonet dataset after discretization. 

 



based on the speed of wind as: W0 (calm) [<0.3]; W1 (light air [0.3–1.5]; W2 (light breeze) [1.6–3.3]; W3 (gentle 
breeze) [3.4–5.5]; W4 (moderate breeze) [5.5–7.9]; W5 (fresh breeze) [8.0–10.7]; W6 (strong breeze) [10.8–
13.8]; W7 (near gale) [13.9–17.1]; W8 (gale) [17.2–20.7]; W9 (strong gale) [20.8–24.4]; W10 (storm) [28.4]; 
W11 (violent storm) [28.5–32.6]; and W12 (hurricane) [≥32.7]. The last attribute, humidity (moisture), has 3 
categories based on the “dew point” temperature [32]: H1 (uncomfortably dry) [0–20]; H2 (comfortable) [20–
60]; and H3 (uncomfortably wet) [60–100]. The results of the discretized sequences are shown in Fig.22. 
 
 

The synthetic dataset was generated using a tool provided by the SPMF Library[33]. Several parameters were 
configured to conduct the experiments, which were divided into two categories: static and dynamic. Static 
parameters remained unchanged throughout all experiments, while dynamic parameters varied from one 
experiment to another to analyze their impact on performance and pattern discovery. In this study, we focused on 
four dynamic parameters. The first is the minimum support threshold (min_sup), a user-defined value that 
determines which patterns are considered frequent in the timed sequence database (TSDB). The second parameter 
is the number of timed sequences (#seq), which refers to the number of tuples or individual sequences contained 
within the TSDB. The third dynamic parameter is the length of each timed sequence, defined as the number of 
events per sequence (#events). The final parameter is the number of items per event (#items). It is important to 
note that the timestamp is a fixed attribute included in every event. Therefore, when an event is said to have three 
items, it consists of three data items plus one timestamp. The impact of these four dynamic parameters on the 
performance and output of the algorithm was thoroughly studied using the synthetic dataset. The values used for 
each parameter across the experiments are summarized in Table 1. However, for the Oklahoma Mesonet dataset, 
the only valid dynamic parameter that is shown in Table 1 is the min-sup. Thus, all other three parameters are 
static. We now explain the range of each parameter and its corresponding default value used in the analysis, as 
summarized in Table 1. During each experiment, we varied the value of one parameter across its defined range, 
while assigning the default values to the remaining parameters to maintain consistency. The minimum support 
threshold (min_sup) ranged from 20% to 80%, with a default value of 50%, which represents the median of the 
interval. The number of timed sequences ranged from 1 to 100,000, and its default value was set to 50,000, also 
the median of the range. For the number of events per sequence, the range spanned from 5 to 50, with a default 
value of 25. Finally, the number of items per event ranged from 1 to 10, with a default of 5, again selected as the 
median. This configuration allowed us to systematically analyze the impact of each parameter on the algorithm’s 
performance, while ensuring balanced and controlled comparisons. 

5.4. Evaluation Metrics  

The evaluation metrics include two measurements: (1) execution time (ET) of algorithms (MinitsDays and 
MMintisDays); and (2) number of patterns (#patt) generated by these algorithms. 

 

5.5. Experimental Results  

In this section, we present the performance of the two algorithms, MinitsDays and MMinitsDays, in terms of 
execution time (ET) and the number of discovered patterns (#patt) for the real and synthetic datasets. 

 

5.5.1. Accuracy  

To validate that MinitsDays consistently produces the same sequential patterns, in terms of both number 
and content, excluding the temporal relations, we used the PrefixSpan algorithm[5] as a benchmark. PrefixSpan 
was selected because it is one of the most well-established algorithms for discovering sequential patterns and has 
been proven to generate complete and correct results. The validation process began by removing the temporal 
relations from the patterns generated by MinitsDays. These simplified patterns were then compared with those 

Parameter name Range of values Default value 
Min_sup 20%–80% 50% 

#sequences 1–100,000 50,000 
#events per sequence 1–50 25 

#items per event 1–10 5 
Table 1. Parameter list for the synthetic dataset 

 



produced by PrefixSpan to ensure that for every sequential pattern discovered by PrefixSpan, a corresponding 
pattern existed in the output of both MinitsDays and MMinitsDays. For example, consider the sequential pattern 
X = < {a} {b} {a, b} >, generated by PrefixSpan, and the timed sequential pattern Y = < {a} [2, 5] {b} [3, 7] {a, 
b} >, generated by MinitsDays and MMinitsDays. After removing the temporal intervals from Y, we compared it 
to X. If the order of itemsets in Y matched that in X, they were considered equivalent. However, if the order was 
different, they were not considered a match. For instance, Z = < {b} [2, 5] {a} [3, 7] {b, a} > did not match X, 
because the itemset {b} occurred before {a}, altering the sequence. It is important to note that within an individual 
itemset (e.g., {a, b}), the order of items does not matter, as all items share the same timestamp. 

At the conclusion of this validation experiment, we confirmed that both MinitsDays and MMinitsDays 
generated the exact same set of sequential patterns as PrefixSpan (excluding temporal information), thereby 
ensuring the correctness and completeness of our proposed algorithms. 

5.5.2 Execution time  

The execution time was measured from the moment a dataset was loaded until the algorithm completed 
the generation of timed sequential patterns. Table 2 presents the average performance of the two algorithms: 
MinitsDays and MMinitsDays. The results indicate that the execution time (ET) of MMinitsDays was significantly 
reduced compared to MinitsDays. Specifically, execution time decreased by 50% for the Oklahoma Mesonet 
dataset, and by up to 90% for the synthetic datasets. These results demonstrate the efficiency and scalability of 
the multi-core implementation in handling both real and large-scale synthetic data. 

5.5.3 Impact of Minimum Support 

In this set of experiments, we compared the execution time (ET) and the number of discovered patterns 
(#patt) across different values of the minimum support threshold (min_sup), using both the Oklahoma Mesonet 
and synthetic datasets. As shown in Fig. 23 and Fig. 24, we observed that increasing the min_sup value led to a 
decrease in execution time for all algorithms. This trend is expected, as higher support thresholds result in fewer 
candidate sequences satisfying the min_sup condition, thereby reducing the number of timed sequential patterns 
that need to be generated and processed. When dealing with large datasets and a significant number of timed 
sequential patterns, MMinitsDays consistently outperformed its single-core counterpart, MinitsDays. This 
highlights the advantage of utilizing multi-core CPUs when working with large Timed Sequence Databases 
(TSDB), as they offer significant improvements in performance and scalability. Interestingly, the multi-core 
implementation also proved efficient even at low min_sup values, where a large number of candidate sequences 
were generated. However, as min_sup exceeded 60%, the execution times of MinitsDays and MMinitsDays began 
to converge. This is due to the sharp drop in candidate sequences, resulting in fewer patterns being generated and 
processed. As a result, many threads in MMinitsDays remained idle, causing the algorithm to behave similarly to 
the single-core MinitsDays. From a performance comparison perspective, Fig. 23 shows that MinitsDays 
outperformed Minits-AllOcc, achieving a 52% reduction in execution time. Additionally, MMinitsDays 
outperformed MinitsDays, with a 28% improvement. Similarly, in Fig. 24, MinitsDays again outperformed 
Minits-AllOcc with a 51% improvement, while MMinitsDays showed a 21% improvement over MinitsDays. 

Another key observation was that all algorithms produced the same number of timed sequential patterns 
across all tested support thresholds. As a result, the pattern count curves in Fig. 23 and Fig.24 were identical and 
overlapping. As the min_sup threshold increased, the number of discovered patterns decreased, since fewer 
sequences satisfied the stricter frequency requirement. This reduction is directly attributed to the smaller 
proportion of timed sequences in the TSDB that contained candidate patterns, as clearly shown in the figures. 
 
 
 

Data 
sets 

MinitsDays Minits-AllOcc MMinitsDays MMinits-AllOcc 

ET # patt ET # patt ET # patt ET # patt 

Oklahoma 
Mesonet 8.376 (min) 3756 21.319 

(min) 3756 4.503 
(min) 3756 8.604 (min) 3756 

Synthetic 
data 

10.681 
(min) 3780 27.319 

(min) 3780 3.23 
(min) 3780 10.825 (min) 3780 

Table 2. Average execution time (ET) and #patterns. 

 



 

 

 
 

 
Fig.23. Parameter study (min_sup) for Oklahoma dataset. 
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5.5.4. Impact of the Number of Timed Sequence in the Database 

In this set of experiments, we compared the execution time (ET) and the number of discovered timed 
sequential patterns (#patt) with respect to the number of timed sequences (#seq). As shown in Fig. 25, we observed 
that as the number of timed sequences increased, the execution time of all algorithms also increased. This is 
because the algorithms required more time to process the additional timed sequences that were added to the Timed 
Sequence Database (TSDB) to determine whether they contained any valid timed sequential patterns. We also 
noted that the number of timed sequential patterns generated by the algorithms increased with the growth in the 

 

 

 
Fig.24. Parameter study(min_sup) for Synthetic dataset. 
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number of timed sequences, as illustrated in Fig. 25. MinitsDays outperformed Minits-AllOcc in terms of 
execution time, achieving a 42% improvement. Additionally, MMinitsDays outperformed MMinits-AllOcc, 
demonstrating an 86% improvement in execution time. The increase in the number of discovered patterns can be 
attributed to the higher likelihood of identifying more patterns within the newly added timed sequences that satisfy 
the minimum support (min_sup) threshold, which was set to 50% by default. As the number of timed sequences 
in the database increases, the algorithm evaluates whether any new patterns, not previously identified in the 
original sequences, can now be discovered. These new patterns are then evaluated against the min_sup threshold. 
It is possible that certain patterns that were infrequent in the original database, due to being supported by too few 
timed sequences, may now meet the support threshold after the addition of new sequences. Consequently, these 
patterns are now classified as valid timed sequential patterns, leading to an overall increase in pattern discovery. 
For instance, in the synthetic dataset, a database with 1,000 timed sequences yielded 3,720 patterns, while a 
database with 10,000 timed sequences produced 3,780 patterns. 

 

 

 

 

Fig.25. Parameter study (# Sequences) for Synthetic dataset. 
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5.5.5. Impact of Number of Events per Timed Sequence  

Fig. 26 illustrates the impact of the number of events (#events) per timed sequence on both the execution 
time (ET) and the number of discovered timed sequential patterns (#patterns). In terms of execution performance, 
MinitsDays outperformed Minits-AllOcc, achieving a 19% improvement in execution time. Additionally, 
MMinitsDays outperformed MinitsDays, demonstrating a 41% improvement in execution time. There is a clear 
correlation between the length of a timed sequence and the number of patterns discovered. As the number of 
events per timed sequence increases, the potential for discovering more complex and longer patterns also increases. 
This is because the algorithm can extend each pattern up to the maximum length of the timed sequence. If a 
sequence contains n events, it is possible to discover timed sequential patterns ranging in length from 1 to n. As a 
result, the execution time increases with the length of timed sequences, due to the growing number of candidate 
patterns to evaluate, as demonstrated in Fig. 26. 

 

 
 

 
 

Fig.26. Parameter study (# events) for Synthetic dataset. 
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5.5.6. Impact of the Modification Ratio 

The modification ratio refers to the rate at which changes, such as updates, insertions, or deletions, are 
made to an existing database of timed sequences. In the final experiment, we compared the execution time (ET) 
and the number of discovered timed sequential patterns (#patt) under varying modification ratios. Fig. 27 presents 
the results for both insertion and deletion scenarios. When the figure is read from left to right, it displays the 
impact of increasing the insertion ratio. Conversely, when read from right to left, it shows the effect of increasing 
the deletion ratio. As observed in the insertion scenario, increasing the insertion ratio leads to a rise in execution 
time. This is because the algorithms need additional time to examine the newly inserted timed sequences in the 
Timed Sequence Database (TSDB) and determine whether they contain new patterns. As the number of timed 
sequences increases, the likelihood of discovering more patterns that meet the minimum support threshold 
(min_sup = 50%) also increases. Consequently, this results in a higher number of timed sequential patterns being 
produced, as shown in Fig. 27. The algorithm must evaluate whether new patterns, not previously observed in the 
original dataset, emerge because of the inserted sequences. These potential patterns are then compared against the 
min_sup threshold. Some patterns that were previously infrequent (i.e., not supported by enough sequences) may 
become frequent after new sequences are added. As a result, the number of newly discovered timed sequential 
patterns increases. 

 

 

 

Fig.28. Parameter ET study for Synthetic dataset  
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In contrast, the deletion scenario exhibits the opposite effect. As sequences are removed from the TSDB, 
both the execution time and the number of discovered patterns decrease. This reduction occurs because the chances 
of identifying patterns that meet the min_sup threshold reduce, due to the overall decline in sequence count and, 
thus, the lower support for previously frequent patterns. 

6. Conclusion and Future Work 

In this paper, we presented an algorithm called MinitsDays for discovering timed sequential patterns (TSP) 
from dynamic timed sequence databases (TSDB). The proposed algorithm is designed to mine TSPs incrementally, 
eliminating the need to re-execute the entire process from scratch after each update to the database. We 
implemented two versions of the algorithm: the first, MinitsDays, is designed for execution on single-core CPUs, 
while the second, MMinitsDays, takes advantage of multi-core CPUs for parallel processing. Through a series of 
experiments, we evaluated the performance of both implementations in terms of accuracy and execution time. The 
results confirmed that the algorithms produced complete and correct sets of patterns. Additionally, MMinitsDays 
demonstrated significantly better execution times compared to MinitsDays, particularly in scenarios involving 
large datasets, long timed sequences, or a high number of items per event. 

For future work, we intend to enhance the algorithm to address more complex and practical applications, such 
as data stream mining, where data continuously evolves over time. Furthermore, we plan to develop a more 
scalable version of MinitsDays by leveraging modern parallel computing platforms, including GPU and Apache 
Spark, to better handle the demands of Big Data environments where the number of sequences, events, and items 
is exceptionally large. 
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