
Mining Timed Sequential Patterns: The

Minits-AllOcc Technique

Somayah Karsoum a,1, Clark Barrus a, Le Gruenwald a, and Eleazar Leal b

a University of Oklahoma, Norman, OK 73019, USA

E-mail:somayah.karsoum@ou.edu ; ORCID: https://orcid.org/0000-0002-8855-0175
a University of Oklahoma, Norman, OK 73019, USA

E-mail: clark.barrus@ou.edu ; ORCID:
a University of Oklahoma, Norman, OK 73019, USA

E-mail: ggruenwald@ou.edu; ORCID:
b University of Minnesota Duluth, Duluth, MN 55812, USA

E-mail: eleal@d.umn.edu; ORCID:

Abstract. Sequential pattern mining is one of the data mining tasks used to find the subsequences in a sequence

dataset that appear together in order based on time. Sequence data can be collected from devices, such as

sensors, GPS, or satellites, and ordered based on timestamps, which are the times when they are

generated/collected. Mining patterns in such data can be used to support many applications, including weather
forecasting and transportation recommendation systems. Numerous techniques have been proposed to address

the problem of how to mine subsequences in a sequence dataset; however, current traditional algorithms ignore

the temporal information between the itemset in a sequential pattern. This information is essential in many

situations. For example, doctors, even if they know a symptom B will appear after symptom A for a specific

disease, must know the time interval of when symptom B is expected to appear to reduce the disease's risk and
provide a suitable treatment. Considering temporal relationship information for sequential patterns raises new

issues to be solved, such as designing a new data structure to save this information and traversing this structure

efficiently to discover patterns without re-scanning the database. In this paper, we propose an algorithm called

Minits-AllOcc (MINIng Timed Sequential Pattern for All-time Occurrences) to find sequential patterns and
the transition time between itemsets based on all occurrences of a pattern in the database. We also propose a

parallel multi-core CPU version of this algorithm, called MMinits-AllOcc (Multi-core for MINIng Timed

Sequential Pattern for All-time Occurrences), to deal with Big Data. Extensive experiments on real and

synthetic datasets show the advantages of this approach over the brute-force method. Also, the multi-core CPU

version of the algorithm is shown to outperform the single-core version on Big Data by 2.5X.

Keywords. Data mining, Sequential pattern mining, Timed sequential patterns, Singe-core and multi-core

processor.

1 Corresponding Author: Somayah Karsoum , E-mail: somayah.karsoum@ou.edu

mailto:somayah.karsoum@ou.edu
mailto:clark.barrus@ou.edu
mailto:ggruenwald@ou.edu
mailto:eleal@d.umn.edu
mailto:somayah.karsoum@ou.edu

1. Introduction

Sequential pattern mining (SPM) [1] analyzes a sequence database, which contains

sequences of events that are ordered based on the times when the events occurred or

collected, called timestamps, to discover sequential patterns. These sequential patterns

are those time-ordered events that frequently occur in the sequence database. An example

of a sequential pattern is “Patients of heart attack have cholesterol first, then

uncomfortable pressure, then abdominal pain.” SPM has been used in many real-life

application areas such as weather prediction [3] and [23], illness symptom pattern

prediction [16], network intrusion detection [26], educational data mining [5], and

customer shopping behaviors [1]. For example, in healthcare applications, with

sequential patterns discovered from a sequence database containing illness symptom

occurrence, we can answer questions like “in which order do the symptoms of a heart

attack frequently occur?” Similarly, in weather prediction, with sequential patterns

discovered from a sequence database recording past tornado events, we can answer

questions like “what is the order of the cities that are hit by a tornado frequently?” An

example of this is that in the state of Oklahoma in the U.S.A., during the tornado season,

tornadoes tend to hit three cities, Oklahoma City, Moore, and Norman, in that order.

However, the existing works in SPM, such as [13],[25], and [34], tried to improve the

efficiency of techniques to discover the frequent sequential patterns but discard the time

dimension completely. The timestamps are used to order events within a sequential

pattern, but the transition time between these events is not shown in the discovered

sequential patterns. In many applications, it is important to know the time interval [min,

max] events in a frequent sequential pattern discovered, which we call a timed sequential

pattern. For example, knowing when the following symptom of a heart attack will occur

helps healthcare providers in forming diagnoses, providing treatments at the right time,

and intervening early in critical cases. Similarly, we may want to have a frequent timed

sequential pattern that shows that after a tornado hits Oklahoma City, within 10 to 15

minutes later, the tornado will hit Moore, and then within 3 to 5 minutes later, the

tornado will hit Norman. Knowing the temporal information (the time intervals of event

occurrences) in frequent sequential patterns will help preparing a safety plan to reduce

damages and loss.

As shown in Fig. 1, we have the historical health data consisting of the temperature

(T) and blood pressure (BP) of four patients (P) who had a heart attack. The time was

Fig. 1. Patients' historic health information and discretize data

recorded every time the measurement of temperature or blood pressure was taken for a

patient as shown in the second column. Since a sequential pattern mining algorithm does

not deal with continuous data, we need to apply a discretization technique to segment the

data into classes that have similar features to fall within the same group. For instance,

the blood pressure (BP) has five levels [4]: (1) Normal (BP < 120), (2) Elevated (120 ≤

BP ≤ 129), (3) High Stage 1 (130 ≤ BP ≤ 139), (4) High Stage 2 (140 ≤ BP ≤ 180), and

(5) Crisis (BP > 181). Therefore, we added a column next to each measurement that

contains the equivalent class ID and refers to the blood pressure with the abbreviation

BP followed by the ID of the class into which the blood pressure falls. Back to the blood

pressure levels, we can see that the last column has the blood pressure Class 3 in the first

tuple because the value 131 belongs to Class 3 (High Stage 1). We grouped the tuples in

Fig. 1 by Patient ID as shown in Fig. 2, which represents the timed sequence Database.

The first tuple displays all the symptoms of patient P1 ordered based on the timestamps.

A timed sequential pattern that we want to discover is about the symptoms that

frequently occur among patients and the typical transition times between the symptoms

(in terms of days in our example). The following is the format of a pattern called a Timed

Sequential Pattern (TSP) that would be discovered in this study:

TSP = < {T1, BP3} [2,7] {T2}>

This TSP has two itemsets: itemset 1 consisting of two items T1 and BP3, and

itemset 2 consisting of item T2. Itemset 2 occurs within 2 to 7 days after itemset 1. In

our notations, all items enclosed within braces {} occur at the same time and constitute

an itemset, and the square brackets [min, max] indicate the time duration to move from

one itemset to the next. In this algorithm, the time duration represents the temporal

relation [min, max]. Thus, the given example TSP shows that frequently when patients

have a temperature falling in the Class 1 (T1) and a blood pressure falling in the Class 3

(BP3), then within 2 to 7 days, the patients will have a temperature in the Class 2 (T2).

If we apply traditional sequential pattern mining, then this sequential pattern will only be

< {T1, BP3} {T2}>, which does not include the transition time [2, 7].

Incorporating the temporal information in a sequential pattern raises additional

challenges for mining compared to regular sequential pattern mining. First, while both

sequential pattern mining and timed sequential pattern mining need to find out whether

a pattern occurs in some tuples of a database, timed sequential pattern mining also needs

to find out how many times the pattern occurs in each tuple to compute the temporal

relationship between the item3sets in the pattern. Suppose we have a tuple of a patient

that has all the measurements within six months and the following symptoms occurring

many times: low temperature followed by high blood pressure after some time. Since the

timed sequential pattern mining problem wants to know when the high blood pressure

Fig. 2. Sequence records

occurs, it is not sufficient to find only the first position of this symptom and report the

temporal relation. For example, from Fig. 2, we can observe that the fourth patient, P4,

has the following symptoms based on the timestamp order: the temperature from Class

1 and the blood pressure from Class 2 {T1, BP2} followed by the temperature from Class

1 and the blood pressure from Class 3 {T1, BP3} followed by the temperature from Class

2 and the blood pressure from Class 3 {T2, BP3}. The tuple for this patient is: P4 = <

{T1, BP2}, {T1, BP3}, {T2, BP3}>. To find the temporal relation between the two

symptoms {T1} and {BP3} (for the pattern denoted as < {T1} [] {BP3}>), we need to

do the following as shown in Fig. 3:

1- Find the timestamp difference t1 between the first occurrence of T1 and the first

occurrence of BP3 (solid arrows).

2- Find the timestamp difference t2 between the first occurrence of T1 and the second

occurrence of BP3 (dotted arrows).

3- Find the timestamp difference t3 between the second occurrence of T1 and the first

occurrence of BP3 (dashed arrows).

4- Find the minimum timestamp difference and the maximum timestamp difference

among t1, t2, and t3.

5- Produce the temporal relation as [min, max].

So, to find all possible occurrences of a pattern, the naïve method is to scan each

tuple until the end in the database. However, a sequential pattern mining algorithm will

stop checking the rest of a tuple in the database as soon as the pattern is found. In contrast,

timed sequential pattern mining requires checking all the tuples in the database. First, it

is necessary to consider all possible occurrences of the pattern and all the different

timestamps of each occurrence and find the temporal relation. After the temporal relation

is found for one patient, we need to check the temporal relation for the same symptoms

among all patients. The final interval [min, max] represents the minimum and maximum

time difference among all patients in the database.

This leads to the second challenge of timed sequential pattern mining, which updates

the temporal relation between itemsets as soon as a pattern is found. When a timed

sequential pattern is defined, it means that the ratio of tuples that contain this pattern is

greater than or equal to a user-defined threshold. Then, when we want to extend that

pattern to include more symptoms; it does not mean that the pattern must appear at the

same tuples because some tuples may not carry it anymore. Accordingly, the time

relation is not valid anymore, and we need to update that relationship based on the new

timestamps of the new tuples. Let us suppose that we have the timed sequence pattern <

{T1, BP3} [t1, t2] {T1}>. From Fig. 1, we can observe that P1 (Tuples 1 and 3) and P2

(Tuples 4 and 5) have these symptoms. So, t1 and t2 are calculated based on the

timestamps associated with these symptoms in these tuples. When the pattern is extended

Fig. 3. All possible occurrences of the symptom {T1} {BP3}

in P4

to be < {T1, BP3} [t1, t2] {T1} [t3, t4] {T1, BP1}>, we can observe that the records of

P2 do not carry this pattern and only P1 had these symptoms. Therefore, the t1 and t2

must be updated based on the timestamps associated with symptoms in Tuples 1 and 3

(not also Tuples 4 and 5). The brute force technique needs to scan the database again to

update the temporal relation of the pattern. Thus, for every pattern, we need to scan the

entire database many times to make sure that we have the correct temporal relations.

The contributions of this paper are the following:

1. The idea of incorporating transition time between item sets in a sequential

pattern indicates all possible time occurrences of the pattern within the whole

timed sequence database. The time can be any descriptive statistic based on the

user's preference, such as range, average, etc.

2. The parallel implementation of the Minits-AllOcc algorithm can help when

dealing with Big Data.

3. The extensive experiments compare the single-core algorithm against the multi-

core algorithm on real and synthetic datasets.

The remainder of the paper is organized as follows: Section 2 reviews the related

work. Section 3 introduces and defines the timed sequential pattern mining problem.

Section 4 explains how the algorithm works. The results of performance evaluations on

different datasets are given in Section 5. Finally, Section 6 concludes the paper and

discusses future work.

2. Problem Definition

In this section, we review the definitions of the sequential pattern mining problem

and introduce new definitions for the timed sequential pattern mining problem. Recalling

the traditional sequential pattern mining problem [1], we define an itemset I as a set of

items, such that I ⊆ X, where X = {x1, x2, . . . xl} is a set of items in the database. A

sequence (tuple) s is an ordered list (based on timestamps) of item sets. A sequence A =

<{a1}, {a2}, …{an}> is contained in another sequence B = <{b1}, {b2}, …{bm}> and B

is a super-sequence of A if there exists a set of integers, 1≤ j1 < j2 <…< jn ≤ m, such

that𝑎1 ⊆ 𝑏𝑗1 , 𝑎2 ⊆ 𝑏𝑗2 , … , 𝑎𝑛 ⊆ 𝑏𝑗𝑛.

A sequence database S is a set of sequences (tuples) <sid, si> where sid is a

sequence identifier and si is a sequence. A tuple <sid, si> is said to contain a sequence 𝛼

if 𝛼 is a sub-sequence of si. Since our problem also considers the temporal data, we

incorporate timestamps explicitly in the database and introduce new definitions.

Definition 1. A timed event is a pair e = (I, t), where I am an item set that occurs at

the timestamp t. We use e. I and e.t to indicate, respectively, the itemset I and the

timestamp t associated with the event e. The list of events that is sorted in the timestamp

order is called a timed sequence TS = <{e1}, {e2}, ... , {en}>, such that ei.x ⊆ I (1 ≤ i ≤

n). A timed sequence database TSDB is a set of sequences <TS_id, TS> where TS_id is

a timed-sequence identifier and TS is a timed sequence.

Example 1. (Running Example) The timed sequence database in Fig. 4 is used as

an illustrative example in this paper. For simplicity, we will use letters to refer to items

that represent different properties of objects in the database (e.g., temperature and blood

pressure for patients), and integer numbers to refer to timestamps that represent the times

when those properties are collected. In this example, there are four timed sequences with

IDs from TS1 to TS4. Each timed sequence consists of a set of events ordered in the

events’ timestamps. For example, TS1 consists of two events: the first event {a, b, 5},

which occurred at timestamp 5, followed by the second event {d, g, 12}, which occurred

at timestamp 12.

Definition 2. Given a sequence A = <{I1}, {I2}, …{In}> and a timed sequence TS =

<{𝑒1}, {𝑒2}, … , {𝑒𝑚}>, the All-time Occurrences of A in TS in the timed sequence

database TSDB is defined as an ordered list of indices 1≤ j1 < j2 < …< jn ≤ m, such that:

𝐼1 ⊆ 𝑒𝑗1 . 𝐼, 𝐼2 ⊆ 𝑒𝑗2 . 𝐼, … 𝐼𝑛 ⊆ 𝑒𝑗𝑛 . 𝐼. The delta 𝛥 is defined as𝛥 = 𝑒𝑝.𝑗𝑖−1 . 𝑡 − 𝑒𝑝.𝑗𝑖 . 𝑡.

Example 2. Let sequence A = <{a}{b}> and timed sequence TS4 = < {a, 10}, {b, f,

19}, {d, 20}, {b, 30}>, as shown in Fig. 4. The indices of the events for the first

occurrence of sequence A in TS4 are {e1, e2}, as shown by the solid arrow in Fig. 5. The

delta 𝛥 is the difference between the timestamps of these two consecutive events, which

is e1.t1 = 10 and e2.t2 = 19. Thus, the 𝛥 = 19 – 10 = 9. Then, the second occurrence of

sequence A in TS4, as shown by the dotted arrow in Fig. 2, has the events’ indices {e1,

e4}. The delta 𝛥 is the difference between the timestamps of these two consecutive events,

which is e1.t1 = 10 and e4.t2 = 30. Thus, the 𝛥 = 30 – 10 = 20. Similarly, we can find the

rest of the All-time Occurrence. The support of a sequence A in a sequence database, or

a timed sequence database, is the percentage of the number of sequences in the database

that contains A, such that sup(A) = (#sequences that contain A / #sequences in DB) *100.

If the support of sequence A is greater than or equal to a user-defined threshold called

minimum support (min_sup), then it is called a sequential pattern [1].

Definition 3. A sequence A is called a timed sequential pattern TSP if and only if

it is a sequential pattern and accompanied by temporal relationships 𝜏i between item

sets where it represents any descriptive statistic, such as an average of transition time or

range, calculated based on the values of the delta 𝛥. TSP is denoted as: TSP = <{I0} [𝜏1]

{I1} [𝜏2] {I2}…… [𝜏n] {In}>. For brevity, in the rest of this paper, when we mention a

pattern, we refer to a timed sequential pattern.

Example 3. Let us assume the min-sup =50%; since the support of sequence A=

<{a}{b}> is 50%, the sequence is a sequential pattern. In this paper, we assume that a

user chooses the temporal relation to be presented as a range of time [min, max]. Thus,

the timed sequential pattern version is <{a} [9, 20] {b}>. The timed sequential patterns

thus are sequential patterns that satisfy the min_sup condition and include the transition

times between item sets.

3. Related Works

Sequential pattern mining was first introduced in [1], where three algorithms,

AprioriSome, DynamicSome, and AprioriAll, were proposed to discover sequential

patterns. AprioriAll is the basis of many other efficient algorithms that have been

proposed to improve its performance. Those algorithms inspired [27] to propose a

technique to generate fewer candidates called GSP. Since all algorithms were based on

the Apriori algorithm, they were classified as Apriori-based algorithms. Other algorithms,

such as SPADE [34], adopted a vertical ID-list database format that reduces the number

of database scans. In contrast, pattern-growth-based algorithms, such as FreeSpan [13]

and PrefixSpan [25], use database projection, making them more efficient than other

Apriori-based algorithms, mainly when they deal with an extensive database. These

algorithms generate a smaller database for their next pass because the sequence database

is projected into a set of smaller databases, and then sequential patterns in each of them

are explored. Thus, they are more efficient. More literature reviews about the state-of-

the-art sequential pattern mining algorithms can be found in [9].

Recently, with the existence of a large volume of data in many applications, several

sequential pattern mining algorithms have been proposed to efficiently handle large

databases consisting of vast amounts of sequences using different platforms. For example,

[15] uses the multi-core processor architecture to implement pDBV-SPM to improve

processing speed for mining sequential patterns. Ha-GSP [22] adopts the principles of

GSP and implements them on the Hadoop platform for solving the limited computing

capacity and inadequate performance with massive data of the traditional GSP. MR-

PrefixSpan [31] uses the MapReduce platform to implement the parallel version of

 Fig. 4. An Example of Timed Sequence Database

 Fig. 5. All-time Occurrence of A in TS4

PrefixSpan to mine sequential patterns on a large database. More literature reviews about

the state-of-the-art parallel sequence mining algorithms are in [10].

Previous algorithms represent the traditional technique of sequential mining

patterns; however, the researchers studied if the same dataset can be used to extract more

informative patterns. Thus, more techniques have been proposed to find more exciting

extensions of sequential patterns and here examples of those patterns but not to exclude

others. One of these patterns is closed sequential patterns [35,36] that mine not all

subsequences but only closed subsequences, which those containing no super sequences

with the same support. This solved the efficiency problem of dealing with the tremendous

number of frequent subsequences for using a very low minimum support threshold or

mining very long sequences. Other interesting patterns are negative sequential patterns

[37,38,39,40]. The idea of positive (traditional) sequential patterns focuses on finding

the positive occurrences correlation between items in a dataset. In contrast, the negative

occurrences correlation, or absence, between items is more interesting in some practical

applications. High-utility sequential patterns [41, 42, 43] is another type of sequential

patterns dealing with a quantity of an item in the dataset. The traditional problem of

sequential patterns considers only if an item appears in an itemset of a sequence or not.

The goal of High Utility Sequential patterns HUSP is discovering subsequences having

a utility (importance) greater than or equal to a minimum utility threshold in a

quantitative sequential database. Periodic sequential patterns [44,45,46] is also can be

considered as extension of sequential pattern mining by taking duration as a set of

partitioned sequences. So, periodic pattern mining is still finding patterns that regularly

appear in the time-series database but recurring in specific time interval (e.g., every

Friday). This research concentrates on the traditional (positive) sequential patterns type.

Objects have an ordinal correlation in a sequential pattern based on the timestamp

precedence. We can obtain a sequence by sorting all these objects based on the order of

their timestamps. Because finding frequent itemsets in the association rule mining tasks

discards the ordering of items, some techniques such as [24] take advantage of sorting

items based on the timestamp. They discover different patterns that represent the

different orderings of the items. For example, the general episode is a sequence with

objects A, B, and C where A must occur first, but B and C can occur in any order.

However, the serial episode is a sequence with objects A, B, and C where A must occur

first, then B, and then C. However, the time between itemsets is still discarded, and they

use the time as a gap constraint between itemsets in an episode. So, an expiry constraint

TX is another input besides the sequence database and min_sup threshold. The Tx is an

additional control with the support threshold, which specifies that the appearance of

symbols in an episode occurs no further than TX time units apart from each other. Some

techniques were proposed to specify some timing constraints, such as the time gaps

between adjacent item sets in sequential patterns. For example, [4] modifies the Apriori

[1] and PrefixSpan [25] algorithms to discover the time-interval sequential patterns that

satisfy the interval duration boundaries. The I-PrefixSpan algorithm in [4] has another

input called a set of time-intervals TI, where each time-interval has a range. [14] extends

that work and proposes two algorithms: MI-Apriori and MI-Prefix. The time intervals

incorporated in the patterns reveal the time between all pairs of items in a pattern; these

patterns are called multi-time-interval sequential patterns. A list of intervals (ti3, ti2, ti1)

before item d in a pattern like <a ti1, b, (ti2, ti1), c, (ti3, ti2, ti1), d> means the intervals

between items a, b, and c and item d are ti3, ti2 and ti1, respectively. In educational data

mining, a ti-pattern model [5] is built based on the I-PrefixSpan algorithm to consider

the time between students' activities. So, again, the inputs of this model are a temporal

sequence database and a set of time-intervals (Is, Imn, Ih, Id, Iw, Imt), which refer to seconds,

minutes, hours, days, weeks, and months. For example, one-time intervals were Ih

meaning the model will find the activities of students with a gap value between one hour

and one day. After the model is applied to a group of students who enrolled in

mathematics and computer science program in Learning Management System, one of the

time-interval patterns (ti-pattern) was found: <Lab {1,3} Ih Lab {2,3} Ih Lab {2,3,4} >, where

Lab {1,3} means either Lab1 or Lab3. The experts can observe that some students work

sequentially on several exercise sheets from this pattern. Since the students spend this

gab, it means that the students dig deep into their work. Also, [2] extracts the sequential

patterns of diseases from a medical dataset within user-specified time intervals. CAI-

PrefixSpan [19] is proposed to apply the confident condition from association rules

besides the support condition to filter the timed sequential patterns. The advantage of this

is that the decision-makers can be confident about the possibility of an event happening

within a certain time interval.

The drawback of these methods is that their results will miss some frequent patterns that

do not fulfil the time range constraint. To decide if a pattern is common, two conditions

must be satisfied: the support of the pattern must be greater than or equal to the min_sup,

and the time ranges between the item sets in the pattern must lie within the defined time

intervals. Therefore, if a pattern fulfils the first condition, which means it is common but

does not fulfil the second condition, the algorithm will not report it.

[11] incorporates the temporal dimension in the sequential pattern by defining temporally

annotated sequences (TAS), and [12] proposes the Trajectory Pattern algorithm (T-

pattern) to extract a set of TAS to produce trajectory patterns with a fixed amount of time

to travel between places. The algorithm only works for one-dimensional data. Also, the

times between events in a trajectory pattern are strict, which does not consider the variety

of the traveling time spent between locations by using different transportation modes, for

example. [33] relaxes the travel time so that it is a realistic range for traveling time. The

algorithm still cannot deal with multidimensional data because it deals with only

locations in trajectory data. Also, all the previous techniques do not consider all possible

occurrences of a pattern in an individual sequence in a database, which means the

temporal relations are calculated based on only the first occurrence of a pattern. The issue

of calculating the time intervals of the first occurrence of a pattern and ignoring other

occurrences is addressed in [21]. However, this approach is beneficial for only a few

applications. For example, if a developer wants to evaluate the ease of use of a navigation

system, the time of moving from A to B is tested when the users visit those locations for

the first time. In contrast, in other applications, such as the healthcare application

described in Section 1 above, we must consider all possible occurrences to provide

accurate time intervals.

There also exist works that consider other issues related to time-interval sequential

patterns. FARPAMp (Fast Robust Pattern Mining with information about prior

uncertainty) [30] can deal with timestamp uncertainties. This issue may occur if two

events A and B happen during a time interval that can be overlap. This leads to the

possibility of event A appearing before event B or vice versa. So, the approach is focused

on using time points instead of intervals and fitting probabilistic models for the errors in

the timestamps around these time points. It is an interesting research issue; however, this

is outside the scope of our research. We are addressing the issues of finding all possible

occurrences of timed sequential patterns and producing the most updated temporal

relations between itemsets in the discovered patterns.

To the best of our knowledge, there is no existing algorithm that can find the complete

set of timed sequential patterns, in which each pattern includes the itemsets that occur in

time order and the transition times between them.

4. The Proposed Algorithm: Minutes-AllOcc

We propose an algorithm called Minits-AllOcc to discover the complete set of timed

sequential patterns, which is already frequent candidates, from a timed sequence database.

We have the following subsections that describe the algorithm: Section 4.1 introduces

the core data structure of the algorithm; Section 4.2 gives a brief overview before the

details of the algorithm are explained step by step in Section 4.3; Section 4.4 analyzes

the time complexity of the algorithm, and Section 4.5 proposes enhancements to improve

the efficiency of the algorithm.

4.1. Occurrence Tree (o-Tree)

A data structure called the occurrence tree (O-tree) is proposed to represent all

possible occurrences of a pattern in a particular timed sequence in TSDB. This tree is the

essence of the algorithm because it helps generate timed sequence patterns without

scanning the timed sequence database many times. In the tree, the timed sequence ID

(TSID) is stored as the root. The rest of the nodes stores an event ID eID and its timestamp

eID.t. A node can have multiple parent nodes and multiple child nodes. The information

associated with the link between a parent node and a child node represents the difference

Δ between the timestamps of the two nodes: parent and its child. The structure of the tree

is shown in Fig. 6. For example, when the TS3 in Fig. 4 is scanned, three occurrence

trees for item, a, b, and d are created from the timed sequences <{a,2},<{a,b,19},{d,25}>.

Since the candidate sequence <{a}> appears twice in TS3, its O-tree in Fig. 7 has two

nodes connected to the root. The first one represents the first occurrence at the first event

e1 with its timestamp, and the second represents the

Fig. 6. Occurrence tree data structure

second occurrence at the second event e2 with its timestamp. However, the sequence

<{a} {a}> appears once in TS3 that has two nodes too, but one is connected to the root

and the other is connected to the other node via a link Δ. The link holds the difference

between the parent and child timestamps 19-2=17.

Since each sequence has an O-tree for each timed sequence in TSDB that contains

it, the sequence will have a collection of O-trees that identify its occurrence in the whole

TSDB. Thus, we give the following definition.

Definition 4. Given a sequence A and timed sequence database TSDB, A-Forest is

a collection of all O-trees that identify all possible occurrences of sequence A in TSDB.

Fig. 8. demonstrates the forest of four sequences, <{a}>, <{b}>, <{a} [9, 20] {b}>, and

< {a, b}>. Each forest is surrounded by a dotted rectangle, which has a group of O-trees

that indicates all time occurrences of a sequence in TSDB.

4.2 Overview

Given a TSDB and a min_sup threshold, the main goal of Minits-AllOcc is to find

the complete set of the timed sequential patterns in the TSDB such that each pattern’s

support is greater than or equal to the min_sup threshold. To achieve this goal, Minits-

AllOcc utilizes the forests to store all the required information from the TSDB and

uses them to mine the patterns without having to scan the TSDB many times. The

following steps are performed:

1) Scan TSDB to build an Ij-forest for each distinct item Ij.

2) Find frequent 1-items by counting the number of O-trees in each forest, compare

it against the min_sup threshold, and remove the infrequent 1-items.

3) Merge all O-trees with the same TSID (root node) from different forests to build

a new forest for a candidate sequence. It should be noted that there are two relations

Fig. 8. Merging O-trees of <{a}> and <{b}> to generate

< {a, b}>-forest and <{a}[9, 20]{b}>-forest

between itemsets considered while merging the steps: event-relation and sequence-

relation, which are defined as follows:

Definition 5. Given two itemset X and Y, it is said that X and Y have an Event-

relation e-relation between them, denoted as < {X, Y}> if X and Y occur in the same

event. For example, assume that we have the following timed sequential pattern = <

{High temperature, High blood pressure} [2,3] {low temperature}>. It means that the

patient has both high temperature and high blood pressure simultaneously, and after 2 to

3 days, the patient has a low temperature.

Definition 6. Given two itemset X and Y, it is said that X and Y have a Sequence-

relation s-relation between them, denoted as <{X} {Y}> if X and Y occur in two

different events and the event of X occurs before the event Y. For example, suppose that

we have the following timed sequential pattern = < {High temperature} [4,6] {High

blood pressure} [2,3] {low temperature}>. It means that the patient has only a high-

temperature symptom. Then after 4 to 6 days, the patient has the high blood pressure

symptom. Later, after 2 to 3 days, the patient has a low-temperature symptom.

4) Count the number of O-trees in each forest, compute the support, and compare it

against the min_sup threshold to find the sequential patterns among candidate sequences.

By performing step 4, Minits-AllOcc avoids scanning the whole TSDB for each

candidate to calculate its support.

5) Compute the temporal relation of the suffix (the new appending part of the

pattern) if the candidate sequence is frequent. Then, update the temporal relation of the

prefix (the previous part of the pattern) and generate a timed sequential pattern.

6) Repeat Steps 3, 4, and 5 until the algorithm cannot identify any new timed

sequential pattern. Minits-All Occ's pseudo-code is presented in Fig. 9.

4.3 The Details of the Minits-AllOcc Algorithm

This section describes the five steps presented in the previous section 4.2 in detail

using the running example shown in Fig. 4. The algorithm scans the TSDB tuple by tuple

and builds the associated forest for each item by adding the occurrence trees O-tree (lines

1-19). As shown in Fig. 7, for example, after the algorithm finishes scanning the TSDB,

the <{a}>-the forest has three O-trees because the sequence <{a}> appears in three timed

sequences: TS1, TS3, and TS4. Each O-tree captures all occurrences with their

timestamps of an item and in a particular TS. Thus, in TS1, we have one node that shows

the item a appears in the first event in TS1, and its timestamp is 5. To know the support

of distinct items, the algorithm counts the number of O-trees in each forest and compares

it against the min_sup threshold. If the support of a forest, which also represents of

distinct item's support, is less than the threshold, the forest is removed (lines 20 -27). The

two sequences <{e}> and <{f}> are not frequent because their forests have only one tree,

which means they appear only in one TS; therefore, their support is 25%. Consequently,

two sets are formatted: TSP and -TSP. The first set of TSP contains the complete, timed

sequential patterns. It will be updated periodically as a new timed sequential pattern is

discovered. The second set is 1-TSP, which contains only the timed sequential patterns

of length 1, which will be used as a seed set to extend the patterns in further steps. Both

sets TSP and 1-TSP have these values {<{a}, {b}, {d}, {g}>} (lines 24-25). The next

step is generating candidates by merging the O-trees of all 1-timed sequential patterns by

calling the function find-TSPs (lines 30). The mechanism of merging trees is as follows:

if the relationship is an s-relation, the appended node must have an event ID ei that is

greater than the event ID in the parent node (i.e. comparing the event IDs in the two

nodes) (line 57). Then, the link holds the difference between the timestamps of the parent

and their child (line 59). In contrast, if the relationship is an e-relation, the appended node

must have the same event ID ei as its parent (line 53). For instance, the forests of the two

candidates <{a}[]{b}>, which represents an s-relation, and <{a, b}>, which represents

an e-relation, are shown in Fig. 8. The first <{a}[]{b}>-forest has two O-trees that are

generated by combining the <{a}>-forest and the <{b}> -forest. Even though both the

forests have an O-tree that has a root TS1, the O-tree of <{b}> does not contain a node

that has an event ID greater than e1; thus, it is removed from the <{a}[]{b}>-forest. In

contrast, the node e2 from the <{b}>-the forest is attached to the node e1 from the <{a}>-

forest and the Δ is calculated

between those nodes, which is 19-2 =17. However, the node that has e2 from the

<{a}>-forest does not connect to any node. Since the algorithm is looking for all possible

occurrences of sequence <{a}[]{b}>, the node e1 in TS4 is connected to the two nodes,

which have the event IDs e2 and e4, from the <{b}> O-tree, and each link between the

parent node e1 and child node e2 and child node e4 carries the difference between the

timestamps of the two connected nodes. Because in this example, we consider a temporal

relation as a range [min, max], the algorithm chooses the minimum and maximum values

among all the O-trees in the <{a}[]{b}>-forest, which is [9, 20]. The second <{a, b}>-

the forest has two O-trees that are generated by combining the <{a}>-forest and the

<{b}> -forest. The difference between the s-relation case and the e-relation case when

we merge the trees is the condition of appending nodes. Since this is an e-relation, all

added nodes must have the same event ID ei as their parents. Also, the Δ is always 0

because the nodes have the same timestamps. Both patterns <{a} [9, 20] {b}> and <{a,

b}> are considered to be timed sequential patterns and they are added to TSP set because

their supports are 50% (line 69-76). We calculated the support using the below formula:

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) =
𝑂𝑡𝑟𝑒𝑒𝑠 ∈ 𝑡ℎ𝑒𝑓𝑜𝑟𝑒𝑠𝑡

𝑡𝑖𝑚𝑒𝑑𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ∈ 𝑇𝑆𝐷𝐵 ∗ 100

These two timed sequential patterns are added into TSP =

{<{a}>,<{b}>,<{d}>,<{g}>,<{a} [9, 20] {b}>, <{a, b}>} The algorithm repeats the

same steps, by calling function find-TSPs recursively in line 37, to extend the pattern by

merging O-trees, generating candidates, finding TSPs, and computing temporal relations

until no more TSPs can be found.

As shown in Fig. 10, pattern <{a} [9, 17] {b} [1, 6] {d}> result from merging

between <{a} [9, 20] {b}>-forest and <{d}>-forest. The forest consists of only the O-

trees that representing the candidate, then the support is calculated. Since the support is

50%, the time between the prefix <{a} [] {b}> and suffix <{d}> is calculated as defined

before (the range [min, max]). The TSP set is updated to be {<{a}>, <{b}>, <{d}>,

<{g}>, <{a} [9, 20] {b}>, < {a, b}>, <{a} [9, 17] {b} [1, 6] {d}>}. As it is noted, the

temporal relation between item sets {a} and {b} in the two patterns <{a} [9, 20] {b}>

and <{a} [9, 17] {b} []{d}> changed.

Minits-AllOcc continues repeating the steps until the complete set of TSPs is

discovered. The reader can verify that the TSPs in this example is =

{<{a}>,<{b}>,<{d}>,<{g}>,<{a} [9, 20] {b}>, <{a} [6, 23] {d}>, <{b} [1, 7] {d}>,

<{a, b} [6, 7] {d}>, <{a} [9, 17] {b} [1, 6] {d }>}.

4.4 Analysis of Minits-AllOcc

In this subsection, we discuss the worst-case time complexity of the Minits-AllOcc

algorithm. We have:

In this subsection, we discuss the worst-case time complexity of the Minits-AllOcc

algorithm. We have:

• S(m), where | S | = the number of timed sequences TS in TSDB.

• E(r), where |E| = the maximum number of events in a timed sequence.

• I(c), where |I| = the maximum number of items in an event.

• G(s), where | G |= the number of singleton items in TSDB.

• N , where | N| = the number of all possible candidates

We start with the first part of the algorithm that needs to check each Timed Sequence

S in TSDB, each event E inside that S, and each item inside that E to build the forest (line

1 -19), which cost O(S*E*I). If it is the first time to read an item, that means its forest

does not exist. So, we need to build it from scratch and start counting the number of O-

trees inside that forest. Otherwise, we just need to update the forest by adding the new

O-tree into an existing forest and update the number of O-tress inside that forest, which

cost O(log N). Therefore, the total amount of work performed by the end of (line 19) is

O (S *E*I*log N).

To keep only frequent candidate sequences and remove infrequent ones, the

algorithm calculates the support for each forest (line20 - 27) and adds the frequent

candidate sequences into the TSP-set. So, the total amount of work performed by the end

of (line 27) is O(G+log I) because the number of forests is equal to the number of

singleton (distinct) items in TSDB and removing O-trees for any infrequent sequence is

log I .

Fig. 10. Merging <{a}[9, 20]{b}>-forest and <{d}> to

Generate <{a}[9, 17]{b}[1, 6] {d}>-forest

After that, the algorithm extends the patterns to generate more candidates by calling

the function Find_TSP() (line 30). The function tries to combine each item in the 1-TSP

set to generate 2-length candidate sequences, for example at the first call. The prefix is

the previous k-1-timed sequential patterns, and the suffix is an item from the 1-TSP set.

The function will append the suffix to the prefix and check the support of the new

candidate sequence to decide if it can be considered as a timed sequential pattern or not.

First, we need to find the time complexity of internal functions, then, we will compute

the time complexity of the whole Find_TSP() function.

The Find_TSP() function calls another function called Merge_Trees () (line 43),

sends the forest of the prefix (previous timed sequential pattern), and the 1-TSP to build

the forest for each new candidate sequence considering the different types of

relationships, either it is an s-relation or e-relation. In line 47, the function picks an

occurrence tree pt from the forest of the prefix and compares it with all occurrence trees

st for each 1-length timed sequential pattern (line 48), which cost S*G. If two occurrence

trees with the same root TSID have been found, the function checks if the event ID of

each leaf node from both trees is the same ID or the event ID in the suffix node is greater

than the ID in the prefix node (line 53 and 57), which needs to check all events in both

tress E2. Also, this function updates the content of the forest by adding appropriate O-

trees and calculating the differences ∆ between nodes if the relation type is s-relation.

After that, in line 69, each candidate's support is calculated by counting the number of

trees in its forest. If the candidate is frequent, then after each itemset, the temporal

relation is inserted, which cost E. The total amount of work done by Merge_Trees () is

O(log N*S*G* E3).

Recursively, for each frequent 1-item in the suffix list, in which the time complexity

is O(G), the function Find_TSP() is called (line 37) until no more candidates can be

generated. In the worst case, the function is re-called until the length of a candidate is

equal to the length of the longest timed sequence in TSDB, so it is O(E). Thus, the total

amount of work done by Find_TSP(), ended by line 42, including the work done by

nested function Merge_Trees(), is O(log N*S*G2* E3).. Because we are considering all

possible combinations between any k-1 sequential patterns, where k >=2, and 1-

sequential patterns, the algorithm returns to line 30 and tries another combination

between two items in the 1-TSP set. Thus, besides the time complexity of calling

Find_TSP(), the algorithm combines all items, so O(G). The total amount of work done

by the end of (line 32) is O(log N*S*G3* E3).

The work done by this algorithm for each subsection is O (S *E*I*log N) + O(G+log

I)+ O(log N*S*G3* E3). We conclude that the overall worst-case time complexity of this

algorithm is O(log N*S*G3* E3).

4.5 The proposed Enhancement

In this section, we describe some effective mechanisms to improve the efficiency of

Minits-AllOcc.

4.5.1 Pruning the forest

This technique defines a sequence's forest after merging the O-trees. So, when

those O-trees are used in the next step for generating candidates, they carry only the

necessary information and, therefore, save space by removing some nodes and save time

by avoiding traversing needless branches in trees. Any branch in an O-tree that does not

have a new appended node will be removed after the merging step is executed. Fig. 11

represents the idea by marking the deleted branch of O-trees with a cross symbol. For

example, the O-tree that has a TS3 root that results from merging TS3 O-tree from <{a}>

and <{b}>-forests. Since there is no appended node to the right branch of <{a}>-forest,

this node is removed from <{a} [9, 20] {b}>-forest. Those branches do not exist anymore

in the O-trees.

4.5.2 Using frequency matrix

With this technique, we avoid generating unnecessary candidates, thereby reducing

the number of forests. For example, the algorithm uses the 1-sequence-forests to generate

2-sequence candidates, then keeps frequent candidates and removes infrequent ones.

Since all required information is already available in the forest, we build a frequency

matrix for each sequence to indicate the frequent candidates. For example, the frequency

matrix of <{a}> pattern is shown in Fig. 12. The two different relations, events, and

sequences (the rows) and all 1-timed sequential patterns that can be combined with {a}

(the columns) are considered. The cells under <{b}> column represent the frequency of

the two relations between <{a}> and <{b}>. This frequency is calculated from the forests

of those patterns, as shown in Fig.7. For an s-relation, there are two O-trees (TS3 and

TS4) in which the <{a}> and <{b}> occur at different timestamps within the same timed

sequence. For e-relation, there are two O-trees (TS1 and TS3) in which the <{a}> and
<{b}> occur at the same timestamps within the same timed sequence. From the matrix,

we can infer that <{g}> is not frequent either with an s-relation or e-relation; thus, we do

not need to build the forest of sequence <{a}[]{g}> or <{a, g}>.

Fig. 11. Pruning the Original <{a} [9,20] {b}>-forest and

< {a, b} >-forest in Fig. 10

4.5.3 Using multi-core CPUs

Another enhancement is using multi-core CPUs for implementing Minits-AllOcc, which

we call MMinits-AllOcc. The independent jobs that can be done at the same time are

finding all possible candidates, merging O-trees for those candidates, and deciding if they

are frequent or not. A queue holds all jobs. As soon as one thread becomes idle, the next

job in the queue is assigned to it and this reduces the execution time of the algorithm.

For instance, in the beginning, the algorithm scans the TSDB to build the forest for each

item and finds that <{a}>, and <{b}> are frequent. In the serial version, the algorithm

starts with the pattern <{a}> and keeps extending it until no more patterns can be found

that have prefix <{a}>. Then, it starts with the pattern <{b}> and does the same thing.

With the multi-core version, the algorithm inserts patterns <{a}>, <{b}> into the queue,

as shown in Fig. 13, and works on generating their candidates at the same time. Then,

the candidates, <{a} []{a}>, <{a}[]{b}>,….etc., will be inserted into the queue to let

any idle threads work on calculating their supports and report any of them as a time-

sequential pattern. If one of these threads is done, then the pattern is extended by finding

other candidates, <{a}[]{a}[]{a}>, <{a} []{b}[] {b}, etc., and then inserting them into

the queue. Those candidates wait to be assigned to an idle thread again. This process is

kept going until no more jobs remain in the queue.

Fig. 12. Frequency Matrix for <{a}>

Fig. 13. Multi-core implementation

5. Performance Analysis

In this section, we describe the environment of experiments and report the evaluation

results of testing the algorithms that are implemented in single-core CPUs (Minits-

AllOcc) and multi-core CPUs (MMinits-AllOcc). Different parameters are considered

when these experiments are conducted on real and synthetic datasets. After running many

experiments, we have found that MMinits-AllOcc on a multi-core performed Minits-

AllOcc on a single-core.

5.1. Experiment Setup

All experiments were performed on a computer with a 2.10 GHz Intel Xeon(R)

processor with 64 gigabytes of RAM, running Ubuntu 18.04.1 LTS CPU with 12 cores.

The Minits-AllOcc and MMinits-AllOcc algorithms are implemented in Java 1.8.

5.2 Datasets and Experimental Parameters

We use two real-life, T-Drive [17] [18] and Oklahoma Mesonet [3], [23], and synthetic

datasets. The first real dataset T-Drive is a collection of trajectories gathered by

Microsoft Research Asia after tracking the movements of 10,357 taxis in Beijing, China

for one day. The dataset contains the following attributes: User ID, timestamp, latitude,

and longitude, as shown in Fig. 14. For example, Taxi 1 has a sequence that contains

many events to represent its movements. An event (2008-10-23 02:53:04, 39.93, 116.31)

refers to timestamp, latitude, and longitude, respectively. Since the sequential pattern

mining algorithm cannot deal with continuous data, we discretized the data first by using

a density-based clustering algorithm called Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) [7], and the results of the discretized sequences are

shown in Fig. 15. Taxi 1 has a sequence that contains events in terms of clusters ID. For

instance, event (2008-10-23 02:53:04, C1) refers to timestamp, and cluster Id,

respectively. DBSCAN generates several clusters that contain the close points and

replaces the latitude and longitude of a point with a cluster ID (Ci). For more details, we

refer the readers to [20]

Fig. 14: Sequential database for the T-Drive dataset before

discretization by DBSCAN

Fig. 15: Sequential database for the T-Drive dataset after

discretization by DBSCAN

The second real data set from Oklahoma Mesonet is a world-class network of

environmental interventions by a group of scientists from the University of Oklahoma

(UO) and Oklahoma State University (OSU) for weather monitoring stations. This

network was established on January 1, 1994 and consists of 120 stations covering each

of Oklahoma's 77 counties. The measurements are packaged into "observations" every 5

minutes, then the observations are transmitted to a central facility every 5 minutes, 24

hours per day year-round. The dataset contains the following attributes: county ID,

timestamp, air temperature, rainfall, wind, and moisture-humidity, as shown in Fig. 16.

We discretized the data first by using well-known scales in Meteorology.

For air temperature, the index heat [32] is used to have the nine categories based on

the temperature degree intervals in Fahrenheit: T1 (Extremely hot) [>54],T2 (Very hot)

[53, 46], T3 (Hot) [46, 39], T4 (Very warm) [38, 32], T5 (Warm) [31, 26], T6 (Cold) [25,

0], T7 (Very cold) [0, -10], T8 (bitter cold) [- 11, -29], and 9 (Extreme cold) [> -30].

The recurrence interval [28] is used to categorize the rainfall based on the probability

that the given event will be matched or exceeded in any given year. For example, there

is a 1 in 50 chance that 6.60 inches of rain will fall in X County in a 24-hour period

during any given year. The classes are: R1 (1 year) [1.16– 1.36], R2(2 years) [1.37-1.69],

R3(5 years) [1.70-1.98], R4(10 years) [1.99-2.36], R5(25 years) [2.37–2.64], R6(50

years) [2.65–2.90], and R7(100 years) [2.90-3.15]. For wind, the Beaufort scale [29]

defines 12 classes based on the speed of wind as: W0 (Calm) [<0.3], W1 (Light Air [0.3–

1.5],W2 (light Breeze) [1.6–3.3], W3 (Gentle Breeze) [3.4- 5.5], W4 (Moderate Breeze)

[5.5-7.9], W5 (Fresh Breeze) [8.0–10.7], W6 (Strong Breeze) [10.8–13.8], W7 (Near

Gale) [13.9–17.1], W8 (Gale) [17.2–20.7], W9 (Strong Gale) [20.8–24.4], W10 (Storm)

[28.4], W11 (Violent storm) [28.5–32.6], and W12 (Hurricane) [>= 32.7]. The last

attribute, humidity (moisture), has 3 categories based on the "dew point" temperature [6]:

H1 (Uncomfortably dry) [0 – 20], H2 (Comfortable) [20 -60], and H3 (Uncomfortably

wet) [60-100]. The results of the discretized sequences are shown in Fig. 17.

The synthetic dataset was generated by using a tool provided by the SPMF Library

[8]. Also, we set several parameters to conduct the experiments on the dataset. There are

two types of parameters: static and dynamic parameters. The values of the static

parameters are not changed in experiments. In contrast, the values of the dynamic

parameters are changed from one experiment to another. In this experiment, we have four

dynamic parameters. The first one is the minimum support threshold (min_sup). It is a

user-defined threshold that applies to finding all timed sequential patterns in a timed

sequence database TSDB. The second parameter is the number of timed sequences TS in

TSDB (#Seq), which refers to the number of tuples in the database.

 Fig. 16: Sequential database for the Oklahoma

Mesonet dataset before discretization

Fig. 17: Sequential database for the Oklahoma Mesonet

dataset after discretization

The third parameter is the length of TS in TSDB, which can also be represented as

the number of events per TS (# Events). The last parameter is the number of items in

each event (#items). It should be noted that the timestamp is a fixed attribute in all events.

When it is said that the number of items per event is 3, for instance, it signifies three

items plus the timestamp. We study the effects of all four parameters shown in Table 1

on the synthetic dataset. However, for the T-Drive dataset, the only valid dynamic

parameter, that is shown in Table1 is the min-sup. Thus, all other three parameters are

static. Now, we explain the range of the parameters and the default values of this analysis,

as summarized in Table 1. When the experiment was conducted, we chose various values

of one parameter within its range and assigned the default value to the other parameters.

The min-sup parameter has a range of 20% to 80% with the default value = 50%, which

is the median of the interval. The range of the number of timed sequences parameters is

from 1 to 100,000, and its median value of 50,000, is the default value. For the number

of events per sequence, the default value is 25 because the range is from 5 to 50. The

number of items in the last parameter range has been set at 1 to 10 items per event; thus,

the default value is 5, which is the median.

5.3Competing Algorithms

Since no existing algorithm can discover the timed sequential patterns and consider All-

time Occurrences, we cannot compare Minits-AllOcc against any technique. We will

compare it against MMinits-AllOcc.

5.4 Evaluation Metrics

The evaluation metrics include two measurements: (1) Execution Time (ET) of

algorithms (Minits-AllOcc, and MMintis-AllOcc) and (2) Number of Patterns (#patterns)

that are generated by these algorithms.

5.5 Experimental Results

In this section, we present the performance of the two algorithms, Minits-AllOcc and

MMinits-AllOcc, in terms of execution time (ET) and the number of discovered patterns

(#patterns) for the real and synthetic datasets.

5.5.1 Accuracy

To validate that Minits-AllOcc always gives the same sequential patterns in terms

of the numbers and contents, excluding the temporal relation, PrefixSpan was used [25].

PrefixSpan was chosen because it is one of the well-known algorithms for discovering

sequential patterns. It has been proven to produce complete and correct sequential

Table 1. Parameter List for the Synthetic Dataset

patterns. First, all temporal relations were removed from the patterns that were generated

by Minits-AllOcc. Next, these patterns were compared to the patterns that were generated

by PrefixSpan to make sure that each sequential pattern generated by PrefixSpan has a

matching one generated by Minits-AllOcc and MMinits-AllOcc. For example, a

sequential pattern X= <{a} {b} {a, b}> was generated by PrefixSpan, and a timed

sequential pattern Y= < {a} [2, 5] {b} [3, 7] {a, b}> was generated by Minits-AllOcc

and MMinits-AllOcc. We took away the temporal relations from Y and compared them

with pattern X. In case the order of at least one item set was different, the pattern X was

not matching the pattern Y. For instance, Z= <{b} [2, 5] {a} [3, 7] {b, a}> was not

matching pattern X because the item <{b}> occurred before <{a}>. However, within the

last itemset {a, b} the order did not matter because all the items appeared at the same

timestamp. At the end of this experiment, we found that the two algorithms—Minits-

AllOcc and MMinits-AllOc—discovered the exact patterns that were produced by

PrefixSpan. All algorithms produced the complete and correct set of sequential patterns.

5.5.2 Execution Time

The execution time was recorded from the moment that a dataset had been read to the

moment that an algorithm produced the timed sequential patterns. Table 2 shows the

average performance of the two algorithms: Minits-AllOcc and MMinits-AllOcc. The

execution time (ET) of MMinits-AllOcc decreases by 50% to 60% for T-Drive,

Oklahoma Mesonet, and synthetic datasets, respectively, compared to the execution time

of Minits-AllOcc.

5.5.3 Impact of Minimum Support

In this set of experiments, we compared execution time (ET) and the number of

patterns (#patterns) for different values of

minimum support threshold (min_sup) for datasets T-Drive, Oklahoma Mesonet,

and synthetic. From Fig. 18 (a), Fig. 19 (a) and Fig. 20 (a), we can see that when the

minimum support increased, the execution time of all algorithms decreased. This is

because the algorithms generate fewer timed-sequential patterns when the min-sup

is high, because of fewer candidate sequences that satisfy the min-sup condition.

With a large amount of data and discovered timed sequential patterns, MMinits-

AllOcc outperformed Minits-AllOcc, as shown in Fig. 18(a), Fig. 19(a) and Fig.

20(a). Therefore, multi-core CPUs ought to be used when the size of the timed

sequence database is large.

Table 2. Average Execution Time ET and #patterns

The multi-core CPU version was also efficient when we had low min-sup. As

shown in Fig. 19(a), and 20 (a), the ETs of both Minits-AllOcc and MMinits-AllOcc

were very close when the min-sup was greater than 60%. This is because the number

of candidate sequences, and thus the number of timed sequential patterns, was

getting smaller, so most of the threads were idle. Therefore, MMinits-AllOcc did not

need to use all the available threads and behaved almost like a single-core version

Minits-AllOcc. Another observation was made based on the number of timed

sequential patterns that were generated by these algorithms. All algorithms

discovered the same number of patterns; thus, their curves were overlapping in Fig.

18(b), 19(b), 20(b), 20(d), 21(b), and 21(d). When the min-sup increased, the number

of timed sequential patterns decreased because the patterns that satisfied the min-

sup condition became fewer. By increasing the threshold min_sup, the percentage

of timed sequences in the timed sequence database that was supposed to contain a

candidate sequence decreased, as shown in Fig. 18(b), Fig. 19(b), and Fig. 20(b).

5.5.4 Impact of the Number of Sequences in the Database

In this set of experiments, we compared the execution time (ET) and the number of

discovered timed sequential patterns (#patterns) according to the number of the timed

sequences (#Seq). From Fig. 20(c), we can see that when the number of timed sequences

increased, the execution times of all algorithms increased. This is because the algorithms

needed more time to check the extra timed sequences that were added to the timed

sequence database to decide if they contained a timed sequential pattern or not. We

observed that the number of timed sequential patterns, which were generated by these

algorithms, increased when the number of timed sequences increased, as shown in Fig.

20(d). The number of timed sequential patterns that were discovered by the algorithms

also increased because the possibility of finding more patterns in the new timed

sequences that satisfy the min-sup (50% as the default value) condition also increased.

With an increased number of timed sequences in the database, the algorithms needed to

check if some new patterns could occur and did not exist in the old timed sequences.

Next, the algorithm checked their support against the threshold (min-sup). It is possible

that the support of some old patterns in the database before new sequences was added

did not satisfy the min-sup condition because they were not supported by enough timed

sequences; but with a new timed sequence database, these patterns became timed-

sequential patterns. Thus, the number of newly discovered timed sequential patterns

would increase. For example, if a database had 1,000 sequences in the synthetic dataset,

the number of timed sequential patterns was 3,720, while the number of timed sequential

patterns was 3,780 when the timed sequence database had 10,000 timed sequences.

5.5.5 Impact of the Number of Events per Sequence

Fig. 21(a) and (b) show the impact of the number of events (#Events) per timed

sequence on the execution time (ET) and the number of discovered sequential patterns

(#patterns). There was a strong relationship between the length of a timed sequence and

the number of discovered patterns. Increasing the length of timed sequences (#Events)

drove the discovery of more patterns because the algorithm could extend a pattern up to

the length of the timed sequence. If we have a timed sequence that contains n events, we

can discover a set of timed sequential patterns such that their length varies from 1 to n.

Subsequently, the required time of discovering those patterns will increase as shown in

Fig. 21 (a).

5.5.6 Impact of the Number of Items per Event

In the last experiment, we increased the number of unique items in each event. That

means many new items appear in the timed sequence database TSDB which leads to

detecting new timed sequential patterns. When the number of items increases, the number

of possible combinations between those items to generate candidates also increases. Thus,

the number of patterns increased, as shown in Fig. 21(d). Growing the length of events

led to the growth of the number of candidates, which means the algorithms needed more

time, as shown in Fig. 21(c), to check those events, generate candidates, and determine

if they were timed sequential patterns and reported the temporal relations.

Fig. 18. Parameter Study for T-Drive Dataset

Fig. 19. Parameter Study for Oklahoma Dataset

6. Conclusion and Future Work

In this paper, we presented an algorithm called Minits-AllOcc, to discover timed

sequential patterns TSP, which are sequential patterns that include the transition times

between all timesets. A temporal relation in the timed sequential patterns is calculated

after considering all possible pattern occurrences across the timed sequence database

Fig. 20. Parameter Study for Synthetic Dataset

Fig. 21. Parameter Study for Synthetic Dataset

TSDB. We implemented two versions of Minits-AllOcc: (1) Minits-AllOcc using single-

core CPUs, and (2) MMinits-AllOcc on multi-core CPUs. We conducted experiments to

compare the accuracy and execution time of the algorithms. The experiments showed

that the algorithms produced accurate patterns. Also, MMinits-AllOcc outperformed

Minits-AllOcc when the dataset was enormous in size, in the length of timed sequences,

or in the number of items per event. For future work, we plan to improve Minits-AllOcc

to account for both long timed sequences and Dynamic Timed Sequence Database

(DTSDB). The algorithm will be able to mine TSP without re-executing everything from

scratch.

References

[1] Agrawal R, Srikant R. Mining sequential patterns. In Proceedings of the eleventh international conference

on data engineering 1995 Mar 6 (pp. 3-14). IEEE.
[2] AlZahrani MY, Mazarbhuiya FA. Discovering constraint-based sequential patterns from medical datasets.

Int. J. Recent Tech. Eng.(IJRTE). 2019 Nov.
[3] Brock FV, Crawford KC, Elliott RL, Cuperus GW, Stadler SJ, Johnson HL, Eilts MD. The Oklahoma

Mesonet: a technical overview. Journal of Atmospheric and Oceanic Technology. 1995 Feb;12(1):5-19.

[4] Chen YL, Chiang MC, Ko MT. Discovering time-interval sequential patterns in sequence databases. Expert

Systems with Applications. 2003 Oct 1;25(3):343-54.

[5] Dermy O, Brun A. Can We Take Advantage of Time-Interval Pattern Mining to Model Students Activity?.
International Educational Data Mining Society. 2020 Jul.

[6] Dew Point vs Humidity [Internet]. (n.d.). Cited [2021 Oct 17] Retrieved from
https://www.weather.gov/arx/why_dewpoint_vs_humidity

[7] Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial

databases with noise. Inkdd 1996 Aug 2 (Vol. 96, No. 34, pp. 226-231).
[8] Fournier-Viger P, Lin JC, Gomariz A, Gueniche T, Soltani A, Deng Z, Lam HT. The SPMF open-source

data mining library version 2. InJoint European conference on machine learning and knowledge discovery
in databases 2016 Sep 19 (pp. 36-40). Springer, Cham.

[9] Fournier-Viger P, Lin JC, Kiran RU, Koh YS, Thomas R. A survey of sequential pattern mining. Data

Science and Pattern Recognition. 2017 Feb;1(1):54-77.
[10] Gan W, Lin JC, Fournier-Viger P, Chao HC, Yu PS. A survey of parallel sequential pattern mining. ACM

Transactions on Knowledge Discovery from Data (TKDD). 2019 Jun 7;13(3):1-34.

[11] Giannotti F, Nanni M, Pedreschi D. Efficient mining of temporally annotated sequences. In Proceedings

of the 2006 SIAM international conference on data mining 2006 Apr 20 (pp. 348-359). Society for

Industrial and Applied Mathematics.
[12] Giannotti F, Nanni M, Pinelli F, Pedreschi D. Trajectory pattern mining. InProceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining 2007 Aug 12 (pp. 330-339).

[13] Han J, Pei J, Mortazavi-Asl B, Chen Q, Dayal U, Hsu MC. FreeSpan: frequent pattern-projected

sequential pattern mining. InProceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining 2000 Aug 1 (pp. 355-359).

[14] Hu YH, Huang TC, Yang HR, Chen YL. On mining multi-time-interval sequential patterns. Data &

Knowledge Engineering. 2009 Oct 1;68(10):1112-27.

[15] Huynh B, Vo B, Snasel V. An efficient method for mining frequent sequential patterns using multi-core

processors. Applied Intelligence. 2017 Apr;46(3):703-16.
[16] Yuan J, Zheng Y, Zhang C, Xie W, Xie X, Sun G, Huang Y. T-drive: driving directions based on taxi

trajectories. InProceedings of the 18th SIGSPATIAL International conference on advances in geographic

information systems 2010 Nov 2 (pp. 99-108).

[17] Yuan J, Zheng Y, Xie X, Sun G. Driving with knowledge from the physical world. InProceedings of the

17th ACM SIGKDD international conference on Knowledge discovery and data mining 2011 Aug 21
(pp. 316-324).

[18] Jou C, Shyur HJ, Yen CY. Timed sequential pattern mining based on confidence in accumulated intervals.

InProceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration

(IEEE IRI 2014) 2014 Aug 13 (pp. 771-778). IEEE

[19] Karsoum S, Gruenwald L, Leal E. Impact of trajectory segmentation on discovering trajectory sequential

patterns. In2018 IEEE International Conference on Big Data (Big Data) 2018 Dec 10 (pp. 3432-3441).
IEEE.

[20] Karsoum S, Gruenwald L, Barrus C, Leal E. Using timed sequential patterns in the transportation industry.

In2019 IEEE International Conference on Big Data (Big Data) 2019 Dec 9 (pp. 3573-3582). IEEE.

[21] Li H, Zhou X, Pan C. Study on GSP algorithm based on Hadoop. In2015 IEEE 5th International

Conference on Electronics Information and Emergency Communication 2015 May 14 (pp. 321-324).
IEEE.

[22] McPherson, R. A., C. Friedrich, K. C. Crawford, R. L. Elliott, J. R. Kilby, D. L. Grimsley, J.
E. Martinez, J. B. Basara, B. G. Illston, D. A. Morris, K. A. Kloesel, S. J. Stadler, A. D.
Melvin, A.J. Sutherland, and H. Shrivastava, 2007: Statewide monitoring of the mesoscale
environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24,
pp. 301–321.

[23] McPherson RA, Fiebrich CA, Crawford KC, Kilby JR, Grimsley DL, Martinez JE, Basara
JB, Illston BG, Morris DA, Kloesel KA, Melvin AD. Statewide monitoring of the mesoscale
environment: A technical update on the Oklahoma Mesonet. Journal of Atmospheric and
Oceanic Technology. 2007 Mar;24(3):301-21.

[24] Hanauer DA. Experiences with mining temporal event sequences from electronic medical records: initial

successes and some challenges. InProceedings of the 17th ACM SIGKDD international conference on

Knowledge discovery and data mining 2011 Aug 21 (pp. 360-368).

[25] Han J, Pei J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu M. Prefixspan: Mining sequential patterns
efficiently by prefix-projected pattern growth. Inproceedings of the 17th international conference on data

engineering 2001 Apr (pp. 215-224). IEEE.

[26] Pramono YW. Anomaly-based intrusion detection and prevention system on website usage using rule-

growth sequential pattern analysis: Case study: Statistics of Indonesia (BPS) website. In2014

International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA) 2014
Aug 20 (pp. 203-208). IEEE.

[27] Srikant R, Agrawal R. Mining sequential patterns: Generalizations and performance improvements.

InInternational conference on extending database technology 1996 Mar 25 (pp. 1-17). Springer, Berlin,

Heidelberg.
[28] The 100-Year Flood [Internet]. (n.d.). cited [2021 Oct 17] Retrieved from

https://www.usgs.gov/special-topic/water-science-school/science/100-year-flood?qt-
science_center_objects=0#qt-science_center_objects

[29] The Beaufort Scale, How is wind speed measured? [Internet]. July 2018 Cited [2021 Oct 17].
Retrieved 10/17/2021 from https://www.rmets.org/resource/beaufort-scale

[30] Titarenko SS, Titarenko VN, Aivaliotis G, Palczewski J. Fast implementation of pattern mining
algorithms with time stamp uncertainties and temporal constraints. Journal of Big Data. 2019 Dec;6(1):1-

34.

[31] Wei YQ, Liu D, Duan LS. Distributed PrefixSpan algorithm based on MapReduce. In2012 International

Symposium on Information Technologies in Medicine and Education 2012 Aug 3 (Vol. 2, pp. 901-904).

IEEE.
[32] What is the heat index? [Internet].(n.d.) cited [2021 Oct 17] Retrieved from

https://www.weather.gov/ama/heatindex

[33] Yang H, Gruenwald L, Boulanger M. A novel real-time framework for extracting patterns from trajectory

data streams. InProceedings of the 4th ACM SIGSPATIAL International Workshop on GeoStreaming

2013 Nov 5 (pp. 26-32).

[34] Chiu DY, Wu YH, Chen AL. An efficient algorithm for mining frequent sequences by a new strategy

without support counting. InProceedings. 20th International Conference on Data Engineering 2004 Apr
2 (pp. 375-386). IEEE.

[35] Yan X, Han J, Afshar R. CloSpan: Mining: Closed sequential patterns in large datasets. InProceedings of

the 2003 SIAM international conference on data mining 2003 May 1 (pp. 166-177). Society for Industrial

and Applied Mathematics.
[36] Wang J, Han J. BIDE: Efficient mining of frequent closed sequences. InProceedings. 20th international

conference on data engineering 2004 Apr 2 (pp. 79-90). IEEE

[37] Cao L, Dong X, Zheng Z. e-NSP: Efficient negative sequential pattern mining. Artificial Intelligence.

2016 Jun 1;235:156-82

[38] Wang W, Cao L. VM-NSP: vertical negative sequential pattern mining with loose negative element
constraints. ACM Transactions on Information Systems (TOIS). 2021 Feb 17;39(2):1-27.

[39] Zheng Z, Zhao Y, Zuo Z, Cao L. Negative-GSP: An efficient method for mining negative sequential

patterns. InConferences in Research and Practice in Information Technology Series 2009 Dec 1.

[40] Qiu P, Gong Y, Zhao Y, Cao L, Zhang C, Dong X. An efficient method for modeling nonoccurring

behaviors by negative sequential patterns with loose constraints. IEEE Transactions on Neural Networks
and Learning Systems. 2021 Mar 17.

[41] Qiu P, Gong Y, Zhao Y, Cao L, Zhang C, Dong X. An efficient method for modeling nonoccurring

behaviors by negative sequential patterns with loose constraints. IEEE Transactions on Neural Networks

and Learning Systems. 2021 Mar 17.

[42] Gupta SK. HUFTI-SPM: high-utility and frequent time-interval sequential pattern mining from
transactional databases. International Journal of Data Science and Analytics. 2022 Apr;13(3):239-50.

[43] Yin J, Zheng Z, Cao L. USpan: an efficient algorithm for mining high utility sequential patterns.

InProceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data

mining 2012 Aug 12 (pp. 660-668).

[44] Han J, Dong G, Yin Y. Efficient mining of partial periodic patterns in time series database. InProceedings
15th International Conference on Data Engineering (Cat. No. 99CB36337) 1999 Mar 23 (pp. 106-115).

IEEE.

[45] Fournier-Viger P, Yang P, Lin JC, Duong QH, Dam TL, Frnda J, Sevcik L, Voznak M. Discovering

periodic itemsets using novel periodicity measures. Advances in Electrical and Electronic Engineering.

2019 Mar 17;17(1):33-44.
[46] Surana A, Kiran RU, Reddy PK. An efficient approach to mine periodic-frequent patterns in transactional

databases. InPacific-Asia Conference on Knowledge Discovery and Data Mining 2011 May 24 (pp. 254-

266). Springer, Berlin, Heidelberg.

[47] Tanbeer SK, Ahmed CF, Jeong BS, Lee YK. Discovering periodic-frequent patterns in transactional

databases. InPacific-Asia Conference on Knowledge Discovery and Data Mining 2009 Apr 27 (pp. 242-
253). Springer, Berlin, Heidelberg.

	1. Introduction
	2. Problem Definition
	3. Related Works
	4. The Proposed Algorithm: Minutes-AllOcc
	4.1. Occurrence Tree (o-Tree)
	4.2 Overview
	This technique defines a sequence's forest after merging the O-trees. So, when those O-trees are used in the next step for generating candidates, they carry only the necessary information and, therefore, save space by removing some nodes and save time...

	5. Performance Analysis
	5.1. Experiment Setup

	6. Conclusion and Future Work
	References

