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Abstract. The open nature of Knowledge Graphs (KG) often implies that they are incomplete. Knowledge graph completion
(aka. link prediction) consists in infering new relationships between the entities of a KG based on existing relationships. Most
existing approaches rely on the learning of latent feature vectors for the encoding of entities and relations. In general however,
latent features cannot be easily interpreted. Rule-based approaches offer interpretability but a distinct ruleset must be learned
for each relation. In both latent- and rule-based approaches, the training phase has to be run again when the KG is updated. We
propose a new approach that does not need a training phase, and that can provide interpretable explanations for each inference. It
relies on the computation of Concepts of Nearest Neighbours (C-NN) to identify clusters of similar entities based on common
graph patterns. Different rules are then derived from those graph patterns, and combined to predict new relationships. We
evaluate our approach on standard benchmarks for link prediction, where it gets competitive performance compared to existing
approaches.

Keywords: Knowledge Graph, Multi-Relational Data, Knowledge Graph Completion, Link Prediction, Graph Pattern, Concepts
of Nearest Neighbours, Inference Rules, Analogical Inference, Explainable AI

1. Introduction

There is a growing interest for knowledge graphs (KG) as a way to represent and share data on the Web.
The Semantic Web [2] defines standards for represention (RDF), querying (SPARQL), and reasoning
(RDFS, OWL), and thousands of open KGs are available: e.g., DBpedia, Wikidata (formerly Freebase),
YAGO, WordNet. The open nature of KGs often implies that they are incomplete, and a lot of work have
studied the use of machine learning techniques to complete them.

The task of knowledge graph completion, aka. link prediction [3], consists in predicting missing edges
or missing parts of edges. It is therefore a form of machine learning. Suppose that film Avatar is missing
a director in the KG, one wants to predict it, i.e. identify it among all KG nodes. The idea is to find
regularities in the existing knowledge, and to exploit them in order to rank KG nodes. The higher the
correct node is in the ranking, the better the prediction is. Link prediction was originally introduced for
social networks with a single edge type (a single relation) [4], and was later extended to multi-relational
data and applied to KGs [3]. Compared to the classical task of supervised classification, knowledge
graph completion faces several challenges. First, there are as many classification problems as there are
relations, which count in the hundreds or thousands in KGs. Second, for each relation, the number of
“classes” is the number of different entities in the range of the relation, which typically counts in the

1This paper is an extended version of a paper published at ESWC’19 [1]. It is a revised version of submission 622-1602.
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thousands for relations like spouse or birthPlace. Third, some relations can be multi-valued, like the
relation from films to actors.

In this paper, we report on extensive experimental results about a novel approach to knowledge graph
completion that is based on Concepts of Nearest Neighbours (C-NN), which were introduced in [5], and
applied to query relaxation in [6]. This paper is an extended version of [1] that reports on first results
about the application of C-NNs to link prediction. In particular, the extension includes an analogical
form of inference, and an extensive and deeper experimental evaluation. The C-NN approach introduces
a symbolic form of k-NN (k Nearest Neighbours) where numerical distances are replaced by graph
patterns that provide an intelligible representation of how similar two entities are.

Our hypothesis is that the partitioning of the KG entities into concepts of neighbours (see Section 5)
provides a valuable basis for different kinds of inferences. We here focus on knowledge graph comple-
tion, i.e. the inference of the missing node of an incomplete edge.

The contribution of this work is a novel approach to knowledge graph completion that has the follow-
ing properties:

(1) it is a form of instance-based learning, i.e. it can perform inferences without training, and hence
accomodate new data without re-training;

(2) it is a symbolic approach, i.e. it can provide explanations for each inference;
(3) it shows competitive performance on standard link prediction benchmarks.

The rest of the paper is organized as follows. Section 2 discusses related work on knowledge graph
completion. Section 3 contains preliminaries about knowledge graphs and queries. Section 4 presents
an overview of our approach. Section 5 recalls the definition of C-NNs, and their efficient computation.
Section 6 presents our method to perform C-NN-based knowledge graph completion. Section 7 reports
on positive experimental results on standard benchmarks (WN18, WN18RR, FB15k, FB15k-237), along
with an in-depth analysis of results. Finally, Section 8 concludes and sketches future work.

2. Related Work

Nickel et al [3] published a “review of relational machine learning for knowledge graphs”, where link
prediction is the main inference task. They identify two kinds of approaches that differ by the kind of
model they use: latent feature models, and graph feature models. The former is by far the most studied
one. Before going into details, it is useful to set the vocabulary as it is used in the domain. Nodes are
called entities, edge labels are called relations, and edges are called triples (ei, rk, e j), where ei is the
head entity, e j is the tail entity, and rk is the relation that links the head to the tail.

Latent feature models learn embeddings of entities and relations into low-dimensional vector spaces,
and then make inferences about a triple (ei, rk, e j) by combining the embeddings of the two entities and
the embedding of the relation. The existing methods vary by how they learn the embeddings, and how
they combine them. Those methods are based on a range of techniques including: matrix factoriza-
tion, tensor factorization, neural networks, and gradient descent. For example, one of the first method
for KGs, TransE [7], models a relation as a translation in the embedding space of entities, and scores
a candidate triple according to the distance between the translated head and the tail. The authors of
TransE, Bordes et al, introduced two datasets, FB15k and WN18, respectively derived from Freebase
and WordNet, which became becnhmarks in the evaluation of link prediction methods. Toutanova and
Chen [8] however showed that a very simple method was able to outperform previous methods because
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of a flaw in the datasets: many test triples have their inverse among the training triples. They introduced
a challenging subset of FB15k, called FB15k-237, where all inverse triples are removed. Dettmers [9]
introduced a similar subset of WN18, called WN18RR. Lately, performance was significantly improved
on the challenging FB15k-237 by using convolutional architectures to learn embeddings [10] or to com-
bine the embeddings in scoring functions [9]. The state-of-the-art results are obtained by ComplEx-N3,
combining low-rank tensor decomposition with the addition of inverse relations, and various optimiza-
tions about hyper-parameters and regularization [11]. The task of link prediction has also been extended
with the embedding model RAE to multi-fold relations (aka. n-ary relations), and to instance recon-
struction where only one entity of an n-ary relation is known, and all other entities have to be infered
together [12]. In this work, we limit ourselves to binary relations, and let those advanced cases to future
work.

The latent feature models face two major drawbacks for their application to real settings. First, as
they rely on the learning of entity embeddings, they cannot be applied to unseen entities, and the model
has to be retrained whenever new entities or relations are introduced in the knowledge graph. Second,
the predictions come without any explanation, and the meaning of learned latent features generally
remain obscure. Given that it is unrealistic to expect high precision knowledge graph completion, simply
because some of the missing information cannot be inferred from existing knowledge, human curation
is necessary in practice. An explanation can comfort the curator in the veracity of the prediction, and
could even be used to define automated inference rules.

Graph feature models, also called observed feature models, make inferences directly from the observed
edges in the KG. Random walk inference [13] takes relation paths as features, and sets the feature values
through random walks in the KG. The feature weights are learned by logistic regression for each target
relation, and then used to score the candidate triples. The method has shown improvement over Horn
clause generation with ILP (Inductive Logic Programming) [14]. AMIE+ [15] manages to generate such
Horn clauses in a much more efficient way by designing new ILP algorithms tailored to KGs. They also
introduce a novel rule measure that improves the inference precision under the Open World Assumption
(OWA) that holds in KGs. A fine-grained evaluation [16] has shown that rule-based approaches are
competitive with latent-based approaches, both in performance and in running time. AnyBURL [17]
restricts to path-like Horn clauses, and employs an anytime bottom-up strategy for learning rules. It
significantly improves performance compared to AMIE+, and gets close to the state-of-the-art of latent
feature models. Graph feature models, especially rule-based approaches, offer the advantage to produce
intelligible explanations for inferences, unlike the latent feature models. Moreover, they can be applied
to unseen entities because inferences are based on the neighborhood of the entity in the knowledge
graph, rather than on a learned embedding. However, they require a distinct training phase for each
of the possibly many target relations, whereas the latent feature models are generally learned in one
training phase. A drawback of both kinds of approaches is that new embeddings and new rulesets need
to be learned whenever the KG is updated, which becomes a challenge for dynamic data.

Our approach relies on graph features but a key difference is that there is no training phase, and all
the learning is done at inference time. It is therefore an instance-based approach rather than a model-
based approach. Given an incomplete triple (ei, rk, ?) we compute Concepts of Nearest Neighbours (C-
NN) from the observed features of head entity ei, where C-NNs have a representation equivalent to the
bodies of AMIE+’s rules. From there, we infer a ranking of candidate entities for the tail of relation rk.
In fact, as rk is not involved in the computation of C-NNs, many target relations can be inferred at
nearly the same cost as a single relation. Indeed the main cost is in the computation of C-NNs, which is
easily controlled because the computation algorithm is anytime. Compared to rule-based approaches, it
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E = {Charles,Diana,William,Harry,Kate,George,Charlotte,Louis,male, female}
R = {parent, spouse, gender}
T = {({William,Harry}, parent, {Charles,Diana}),

({George,Charlotte,Louis}, parent, {William,Kate}),
(Charles, spouse,Diana), (Diana, spouse,Charles),
(William, spouse,Kate), (Kate, spouse,William),
({Charles,William,Harry,George,Louis}, gender,male),
({Diana,Kate,Charlotte}, gender, female)}

Fig. 1. Example knowledge graph describing part of the British royal family.

amounts to compute only rule bodies that match the head entity ei, and to add the rule head according to
relation rk.

3. Preliminaries

A knowledge graph (KG) is defined by a structure K = 〈E,R,T 〉, where E is the set of nodes, also
called entities, R is the set of edge labels, also called relations, and T ⊆ E × R× E is the set of directed
and labelled edges, also called triples. Each triple (ei, rk, e j) represents the fact that relation rk relates
entity ei to entity e j. This definition is very close to RDF graphs, where entities can be either URIs or
literals (or blank nodes) and relations are URIs called properties. It is also equivalent to sets of logical
facts, where entities are constants, and relations are binary predicates. As a running example, Figure 1
defines a small KG describing (part of) the British royal family (where ({a, b}, r, {c, d}) is a compact
notation for (a, r, c), (a, r, d), (b, r, c), (b, r, d)).

Queries based on graph patterns play a central role in our approach as they are used to characterize
the C-NNs, and can be used as explanations for inferences. There are two kinds of query elements: triple
patterns and filters. A triple pattern (x, r, y) ∈ V × R× V is similar to a triple but with variables (taken
from V) in place of entities. A filter is a Boolean expression on variables and entities. We here only
consider equalities between a variable and an entity (x = e) and let richer filters about literal values
for future work (e.g., inequalities and intervals on numbers and dates, regular expressions on strings). A
graph pattern P is a set of query elements. Vars(P) denotes the set of variables occuring in P. Equality
filters are equivalent to allowing entities in triple patterns: e.g., pattern {(x, parent, y), (y = Kate)} is
equivalent to the triple pattern (x, parent,Kate). There are two advantages in using filters: (1) simplifying
the handling of triple patterns that have a single form (var-var) instead of four (var-var, entity-var, var-
entity, entity-entity); (2) opening perspectives for richer filters (e.g., x > 10, x ∈ [0, 10]). A query Q =
(x1, ..., xn) ← P is the projection of a graph pattern on a subset of its variables. Such queries find a
concrete form in SPARQL with syntax SELECT ?x1...?xn WHERE { P }. Queries can be seen
as anonymous rules, i.e. rules like those in AMIE+ [15] but missing the relation in the head. For example,
the query Qex = (x, y)← (x, parent, u), (u, parent, v), (y, parent, v), (y, gender, s), (s = male) retrieves
all (person,uncle) pairs, i.e. all pairs (x, y) where y is a sibling of a parent of x, and is male.

We now define the answer set that is retrieved by a query. A matching of a pattern P on a KG K =
〈E,R,T 〉 is a mapping µ from Vars(P) to entities in E such that µ(t) ∈ T for every triple pattern t ∈ P,
and µ( f ) evaluates to true for every filter f ∈ P, where µ(t) and µ( f ) are obtained from t and f by
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Fig. 2. Overview of link prediction based on concepts of nearest neighbours

replacing every variable x by µ(x). In the example KG, a possible matching for the pattern of the above
query is µex = {x 7→ Charlotte, y 7→ Harry, u 7→ William, v 7→ Diana, s 7→ male}. A matching is
therefore a homomorphism from the pattern to the graph. Term “matching” is taken from the evaluation
of SPARQL queries. In logics, terms “grounding” and “instantiation” are used instead. The answer
set ans(Q,K) of a query Q = (x1, ..., xn) ← P is the set of tuples (µ(x1), ..., µ(xn)) obtained from
all matchings µ of P on K. In the running example, the pair (Charlotte,Harry) is therefore an answer
of query Qex. Note that several matchings can lead to the same answer, and that duplicate answers
are ignored. In the following, we only consider queries with a single projected variable, whose sets of
answers are assimilated to sets of entities.

4. Overview of the Approach

5. Concepts of Nearest Neighbours (C-NN)

In this section, we shortly recall the theoretical definitions underlying Concepts of Nearest Neighbours
(C-NN), as well as the algorithmic and practical aspects of their approximate computation under a given
timeout. Further details are available in [5, 6]. In the following definitions, we assume a knowledge
graph K = 〈E,R,T 〉.

5.1. Theoretical Definitions

Definition 1. A graph concept is defined as a pair C = (A,Q), where A is a set of entities and Q is a
query such that A = ans(Q) is the set of answers of Q, and Q = msq(A) is the most specific query that
verifies A = ans(Q). A is called the extension ext(C) of the concept, and Q is called the intension int(C)
of the concept.

The most specific query Q = msq(A) represents what the neighborhood of entities in A have in
common. It is well-defined under graph homomorphism (unlike under subgraph isomorphism). It can
be computed from A by using the categorical product of graphs (see PGP intersection ∩q in [18]), or
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equivalently Plotkin’s anti-unification of sets of facts [20]. In the example KG, William and Charlotte
have in common the following query that says that they have married parents:

QWC = msq({William,Charlotte})
= x← (x, gender, s),

(x, parent, y), (y, gender, t), (t = male),
(x, parent, z), (z, gender, u), (u = f emale),
(y, spouse, z), (z, spouse, y).

We have AWC = ans(QWC) = {William, Harry, George, Charlotte, Louis} so that CWC = (AWC ,QWC)
is a graph concept.

A concept C1 = (A1,Q1) is more specific than a concept C2 = (A2,Q2), in notation C1 6 C2,
if A1 ⊆ A2. For example, a concept more specific than CWC is the concept of the children of Kate and
William, whose extension is {George, Charlotte, Louis}, and whose intension is

x← (x, gender, s), (x, parent, y), (y = William), (x, parent, z), (z = Kate).

Definition 2. Let e1, e2 ∈ E be two entities. The conceptual distance δ(e1, e2) between e1 and e2 is
the most specific graph concept whose extension contains both entities, i.e. δ(e1, e2) = (A,Q) with
Q = msq({e1, e2}), and A = ans(Q).

For example, the above concept CWC is the conceptual distance between William and Charlotte. The
“distance values” have therefore a symbolic representation through the concept intension Q that repre-
sents what the two entities have in common. The concept extension A contains in addition to the two
entities all entities e3 that match the common query (e3 ∈ ans(Q)). Such an entity e3 can be seen as “be-
tween” e1 and e2: in formulas, for all e3 ∈ ext(δ(e1, e2)), δ(e1, e3) 6 δ(e1, e2) and δ(e3, e2) 6 δ(e1, e2).
Note that order 6 on conceptual distances is a partial ordering, unlike classical distance measures.

A numerical distance dist(e1, e2) = |ext(δ(e1, e2))| can be derived from the size of the concept exten-
sion, because the closer e1 and e2 are, the more specific their conceptual distance is, and the smaller the
extension is. For example, the numerical distance is 5 between Charlotte and William (see Cwc), and 3
between George and Charlotte.

Definition 3.

Table 1 lists the 6 C-NNs of Charlotte in the running example. The proper extensions
of C-NN(Charlotte,K) define a partition over the set of entities E, where two entities are in the same
proper extension if and only if they are at the same conceptual distance to entity Charlotte. The in-
tension of the associated graph concept δl provides a symbolic representation of the similarity between
every e′ ∈ proper(δl) and Charlotte. For instance, concept δ2 says that Diana and Kate have in common
with Charlotte to be female persons. Figure 3 and the last column of Table 1 give the partial ordering
between C-NNs: e.g., δ1 6 δ2. Smaller C-NNs contain entities that are closer to the chosen entity, here
Charlotte. In particular, C-NNs δ2 and δ3 contain the nearest neighbours of Charlotte. Although their
numerical distance are the same (3), their intensions are very different: either being female or having
William and Kate as parents.
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Table 1

l ext(δl) (proper in bold) int(δl) sub-concepts

1 {Charlotte} x← (x = Charlotte) -
2 {Diana,Kate,Charlotte} x← (x, gender, s), (s = f emale) 1
3 {George,Louis,Charlotte} x← (x, gender, s), (x, parent, y), (y = William), 1

(x, parent, z), (z = Kate)
4 {William,Harry, x← (x, gender, s), 3

George, Louis,Charlotte} (x, parent, y), (y, gender, t), (t = male),
(x, parent, z), (z, gender, u), (u = f emale),
(y, spouse, z), (z, spouse, y)

5 {Charles,Diana,Kate, x← (x, gender, s) 2, 4
William,Harry,
George, Louis,Charlotte}

6 {female,male, ...} = E x← ∅ 5

Charlotte

Charles

female

male

numerical distance

108
3

1

5

3
George

Louis

Diana
Kate

William Harry

Fig. 3. Venn diagram of the extensions of the 6 C-NNs of Charlotte, labelled by their numerical distance.

Discussion. Given that C-NN(e,K) partitions the set of entities, the number of C-NNs can only be
smaller or equal to the number of entities, and in practice it is generally much smaller. This is interesting
because, in comparison, the number of graph concepts is exponential in the number of entities in the
worst case. Note that the search space of ILP approaches like AMIE+ is the set of queries, which is even
larger than the set of all graph concepts. Computing the C-NNs for a given entity is therefore a much
more tractable task than mining frequent patterns or learning rules, although the space of representations
is the same. The pending questions that we study in this paper is whether those C-NNs are useful for
inference, and how they compare to other approaches.

Compared to the use of numerical measures, like commonly done in k-NN approaches, C-NNs define
a more subtle ordering of entities. First, because conceptual distances are only partially ordered, it can
be that among two entities none is more similar than the other to the chosen entity e. This reflects the
fact that there can be several ways to be similar to something, without necessarily a prefered one. For
instance, who is most similar to Charlotte? Diana because she is also a female (C-NN δ2) or George
because he is also a son of William and Kate (C-NN δ3)? Second, because conceptual distances partition
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Algorithm 1 Partitioning algorithm for entity e in knowledge graph K
Require: K = 〈E,R,T 〉 a knowledge graph, and e ∈ E an entity

1: S := an empty collection of clusters
2: S.add(E, ∅, descr(e)) // the initial cluster (all entities, empty pattern, all edges describing e)
3: while no timeout ∧ ∃(S , P,H) ∈ S : H 6= ∅ do
4: h := chooseEdge(H) // choice of the splitting query element
5: P1 := P ∪ {h} // refined graph pattern
6: S 1 := S ∩ ans(x← P1,K) // refined cluster
7: S 0 := S \ S 0 // remainder of cluster S
8: S.remove(S , P,H)
9: S.add(S 1, P1,H \ {h}) only if S 1 6= ∅

10: S.add(S 0, P,H \ {h}) only if S 0 6= ∅
11: end while
12: return S

the set of entities, it can be said that when two entities are at the exact same conceptual distance, they are
undistinguishable in terms of similarity (ex. George and Louis in C-NN δ3). Third, the concept intension
provides an intelligible explanation of the similarity to the chosen entity.

5.2. Algorithmic and Practical Aspects

We here sketch the algorithmic and practical aspects of computing the set C-NN(e,K) of concepts of
nearest neighbours of query entity e in a knowlege graph K. More details are available in [6]. More
concretely, our algorithm works by iteratively refining a partition {S l}l of the set of entities E, where
each S l is a cluster of entities, in order to get an increasingly accurate partition converging to the partition
induced by the proper extensions of C-NNs.

Algorithm 1 details the partitioning algorithm. Initially, there is a single cluster S 0 = E with P0 being
the empty pattern, and H0 being the description of e. The description of an entity e is a graph pattern
that is obtained by extracting a subgraph around e and, for each entity ei in the subgraph, by replacing ei

by a variable yi, and by adding filter yi = ei. Here, we choose to extract the subgraph that contains all
edges starting from e up to some depth.

Then at each iteration, any cluster S – with pattern P and set of candidate query elements H – is
split in two clusters S 1, S 0 by using an element h ∈ H as a discriminating feature. Element h must
be chosen so that P ∪ {h} defines a connected pattern including variable x. Each addition of a query
element therefore does one of the following: (a) add a filter contraint on a pattern variable, (b) add an
edge between two pattern variables, or (c) add an edge from a pattern variable to a fresh variable. Many
strategies are possible for choosing this element. In this work, we only consider two simple strategies:

• Random: random choice among the valid elements;
• Ordered: choice of equality elements first, then triple patterns whose relation is the least frequently

used in P (novelty).

The new clusters are defined as follows:

P1 = P ∪ {h} Q1 = x← P1 S 1 = S ∩ ans(Q1,K) H1 = H \ {h}
P0 = P Q0 = Q S 0 = S \ S 1 H0 = H \ {h}
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The equations for S 1, S 0 ensure that after each split there is still a partition, possibly a more accurate one.
The empty clusters (S i = ∅) are removed from the partition. As a consequence, although the search space
is the set of subgraphs of the description of e, which has a size exponential in the size of the description,
the number of clusters remains below the number of entities at all time. In the running example, the initial
cluster S 1−6 (the union of concepts δ1 to δ6) is split with element (x = Charlotte) into S 1 and S 2−6.
Then cluster S 2−6 is split with element (x, gender, s) into S 2−5 and S 6. Then cluster S 2−5 is split with
element (s = f emale) into S 2 and S 3−5. Next splits involve elements (x, parent, y) and (y = William)
on S 3−5.

Handling of RDF Schema (RDFS). The implementation takes into account the domain knowledge
expressed as RDF Schema axioms [21]. A special treatment is done for triples (ei,rdf:type, e j),
where e j is a class, i.e. an unary predicate from the logical point of view. Such an unary predicate
is simulated by not replacing e j by a variable in the description of e. Taking inspiration from query
relaxation [22], the implementation also takes into account hierarchies of classes and properties, and
domains and ranges of properties. For instance, this enables to find that two entities with respective
type “horse” and “cat” have type “mammal” in common, even if it does not appear in their explicit
description. A naive way to achieve this is to saturate entity descriptions with inferred triples. A more
efficient way is to refine the above equation defining H0 as H0 = H \ {h} ∪ relax(h), where relax(h) is
a set of relaxations of h [6]. For instance, the relaxation of a class is its set of superclasses.

Termination and efficiency. The above algorithm terminates because the set H (or its saturation in case
of RDFS axioms) decreases at each split. However, in the case of large descriptions or large knowledge
graphs, it can still take a long time. Now, previous experiments [6] show that most concepts are produced
early, and that the rest of the time is spent at finding the last few concepts. Moreover, our algorithm is
anytime because it can output a partition of entities at any time, and hence concepts of neighbours
(possibly generalizations of them). It therefore makes sense to control runtime with a timeout parameter.

Actually, the above algorithm converges to an approximation of the C-NNs, in the sense that the
conceptual distance may be still be an overestimate at full runtime for some entities. This is because
graph patterns are constrained to be subsets of the description of e. In order to get exact results, the
duplication of variables and their adjacent edges should be allowed, but this would considerably increase
the search space.

Experiments on KGs with up to a million triples have shown that the algorithm can compute all C-NNs
for descriptions of hundreds of edges in a matter of seconds or minutes. In contrast, query relaxation does
not scale beyond 3 relaxation steps, which is insufficient to identify similar entities in most cases; and
computing pairwise symbolic similarities does not scale to large numbers of entities. A key ingredient
of the efficiency of the algorithm also lies in the notion of lazy join for the computation of answer
sets of queries. In short, the principle is to compute S 1 from S in an incremental way (rather than
computing ans(Q1,K) from scratch), and to avoid the enumeration of all matchings of P1 by computing
joins only as much as necessary to compute the set of query answers (see details in [6]).

6. Link Prediction

The problem of link prediction is to infer a missing entity in a triple (ei, rk, e j), i.e. either infer the tail
from the head and the relation, or infer the head from the tail and the relation. Because of the symmetry
of the two problems, we only describe here the inference of the tail entity. In the following, we therefore
consider ei and rk as fixed (we avoid them in indices), and e j as variable.
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6.1. C-NN-based Inference

The principle of C-NN-based inference is to generate a ruleset for each concept of neighbours δl ∈
C-NN(ei,K). Those rules are similar in nature to those of AMIE+ or AnyBURL except that only rules
that are matched by the head entity ei are generated. Indeed, the bodies of generated rules are intensions
of C-NNs, which are subsets of ei’s description. From the concept intension int(δl) = Ql = x← Pl, we
generate two kinds of inference rules ρ:

(1) by-copy rules: ρ := Pl → (x, rk, e j), for each e j ∈ E;
(2) by-analogy rules: ρ := Pl → (x, rk, y), for each y ∈ Vars(Pl), y 6= x.

Inference by copy. The first kind of rules (by-copy rules) state that when an entity matches Pl as x, it
is related to entity e j through relation rk. As ei matches Pl as x by definition of concepts of neighbours,
it can be inferred that ei is related to e j. Of course, the strength of the inference depends on the support
and confidence of the rule ρ, which are defined as follows.

supp(ρ) = |ans(x← Pl, (x, rk, e j))| conf (ρ) =
|ans(x← Pl, (x, rk, e j))|
|ans(x← Pl)|+ λ

The support is defined as the number of entities that match Pl as x and are related to e j through rk. The
confidence is defined as the ratio of the support out of the number of entities that match Pl as x. Like
this is done in AnyBURL [17], we use a constant λ > 0 as a kind of additive Laplace smoothing, in
order to favor rules with larger support. The principle of inference by copy is that the tail entities e j to
be predicted for ei can be copied from the tail entities of ei’s neighbour entities. For example, if triple
(Charlotte, parent,Kate) is missing in the above example graph, it can be inferred from some of her
closest neighbours: “George and Louis are similar to Charlotte because they have William as a father,
and their mother is Kate, so Charlotte’s mother could be Kate too” (support=2, confidence=2/(3 + λ)).

Inference by analogy. The second kind of rules (by-analogy rules) state that when a pair of entities
match Pl as x and y, they are related through rk. As ei matches Pl as x by definition of concepts of
neighbours, it can be inferred that ei is related through rk to any entity e j that matches Pl as y when x = ei.
Like above, the strength of the inference depends on the support and confidence of the rule, which are
defined as follows.

supp(ρ) = |ans((x, y)← Pl, (x, rk, y))| conf (ρ) =
|ans((x, y)← Pl, (x, rk, y))|
|ans((x, y)← Pl)|+ λ

The support is defined as the number of pairs of entities that match Pl as x and y, and that are re-
lated through rk. The confidence is the ratio of the support out of the number of pairs of entities that
match Pl as x and y, plus Laplace smoothing λ. The principle of inference by analogy here relies on
the observation that “ei is to e j as x is to y”. By observing that pairs (x, y) that match pattern Pl often
satisfy (x, rk, y), one can predict the missing entity in (ei, rk, ?) to be any entity e j such that pattern Pl is
matched for x = ei and y = e j. For example, assume in the example graph that George, Charlotte, and
Louis are only known to have father William, and that Kate is only known to be William’s spouse, i.e.
triples ({George,Charlotte, Louis}, parent,Kate) are missing. Here, inference by copy for the parents
of Charlotte would only produce Charles and Diana, using William and Harry as similar entities (see
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C-NN δ4 in Table 1). The intension of the conceptual similarity of Charlotte with William and Harry is

QWH = x← PWH

PWH = (x, gender, s), (x, parent, y), (y, gender, t), (t = male),
(y, spouse, z), (z, spouse, y), (z, gender, u), (u = f emale),

saying that “they have a father married to a woman”. From there the following by-analogy rule can
be generated: PWH → (x, parent, z). This rule states that “any female spouse (wife) of a male parent
(father) is a parent”. Applying this rule to Charlotte (and equivalently to George and Louis) leads to the
inference of the fact (Charlotte, parent,Kate) because Kate is indeed the wife of William, who is the
father of Charlotte. It is noteworthy here that Kate is predicted to be a parent although she never appears
as a parent in the incomplete graph. This is not possible with inference by copy.

Comparison with rules in other approaches. The main difference with other rule-based approaches is
that we only generate rules that are specific to the entity ei and relation rk for which predictions are to
be made. Looking in more detail to the structure of rules, each approach has its own language bias. In
AMIE+ [15], only by-analogy rules are considered, and equality filters are excluded in most experiments
because they make the number of rules explodes with the length of rules. They only retain closed rules,
i.e. rules where each variable occurs at least twice. However, non-closed rules still have to be generated
in order to reach all closed rules. Another difference is about rule measures. They use PCA confidence, a
variation of classical confidence under the Partial Completeness Assumption (PCA); and head coverage,
which is a form of recall of the rule relative to the extension of relation rk. In AnyBURL [17], rule shapes
are restricted to chains and cycles (including rule’s head), where rule’s head and equality filters cannot
occur in the middle of a chain. The case of a chain with an equality filter on rule’s head is a subset of our
by-copy rules. The case of a cycle is a subset of our by-analogy rules. AnyBURL supports a third kind of
rule that is not covered in this work: P → (ei, rk, y), where y ∈ Vars(P). Here, entities e j are predicted
based on their own description, indepently of entity ei, which acts as a constant here. In RLvLR [23],
rules are equivalent to the cyclic rules of AnyBURL.

6.2. Aggregation of Inferences

Given an incomplete triple (ei, rk, ?), the output of a link prediction system is a ranking of entities e j.
Rankings of entities are evaluated with measures such as Hits@N (defined as 1 if the correct entity is
among the first N entities, 0 otherwise), and MRR (Mean Reciprocal Rank, the inverse of the rank of the
correct entity).

The question addressed in this section is how to aggregate all inferences presented in previous section
into a global ranking. The same candidate e j may be inferred by several rules, possibly generated from
different concepts. In order to avoid the handling of too many rules, we exclude rules whose confidence
is less than 1%, which is a very weak constraint. As a consequence, it may happen that some entities
are not inferred by any rule, and hence that rankings do not include all entities of the KG. The missing
entities are those for which there is not a single supporting evidence, and their rank is considered as
infinite (Hits@N=0, MRR=0). The idea is to combine the measures of rules to give a score to each
candidate e j, in order to get a global ranking. In this paper, we consider two scores, which we reuse or
adapt from previous work, and detail below:

• Maximum Confidence (MC): introduced in AnyBURL [17];
• Dempster-Shafer (DS): adapted from Denœux’s work on k-NN classification [24].
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Algorithm 2 Inference and ranking of candidate entities e j for entity ei and relation rk based on C-NNs
Require: K = 〈E,R,T 〉 a knowledge graph, ei ∈ E an entity, and rk the relation to predict for ei

Require: getScore, a function computing an entity score from a set of rules (e.g., max confidence)
1: for all e j ∈ E do
2: rules[e j] := ∅ // initialisation of the set of rules inferring each entity
3: end for
4: for all (S , P,H) ∈ Partitioning(ei,K) // for each C-NN do
5: for all e j ∈ E do
6: ρ := P→ (x, rk, e j) // for each by-copy rule
7: if conf (ρ) > minConf then
8: rules[e j] := rules[e j] ∪ {ρ}
9: end if

10: end for
11: for all y ∈ Vars(P) s.t. y 6= x do
12: ρ := P→ (x, rk, y) // for each by-analogy rule
13: if conf (ρ) > minConf then
14: for all e j ∈ ans(y← P, (x = ei)) // for each inferred entity do
15: rules[e j] := rules[e j] ∪ {ρ}
16: end for
17: end if
18: end for
19: end for
20: for all e j ∈ E do
21: score[e j] := getS core(rules[e j]) // aggregating rule scores into an entity score
22: end for
23: return a ranking of entities e j ∈ E according to score[e j]

Maximum Confidence (MC) score. This score is quite simple, and was shown effective in AnyBURL’s
work. The score of entity e j is simply the list of the confidences of the rules that infer triple (ei, rk, e j),
in decreasing order. This is a refinement of the score that was used in first experiments of AMIE, where
the score was the maximum confidence among rules predicting e j. Using a list of confidences instead
of a single confidence allows for a finer ranking. Ranking of lists of confidences is done similarly to
lexicographic ordering. Candidates are first compared with the first confidence. If their first confidence
are equal, comparison is done with the second confidence, and so on. Then, candidates with longer lists
are put first because they have more rules predicting them.

Dempster-Shafer (DS) score. This score is inspired by the work of Denœux [24], and adapted to our
concepts of neighbours. Denoeux defines a k-NN classification rule based on Dempster-Shafer (DS)
theory. Each k-nearest neighbour xl of an instance to be classified x is used as a piece of evidence that
supports the fact that x belongs to the class cl of xl. The degree of support is defined as a function of the
distance between x and xl, in such a way that the choice of k is less sensitive, so that large values of k can
be chosen. DS theory enables to combine the k pieces of evidence into a global evidence, and to define
a measure of belief for each class, which can be used as a score.

We adapt Denoeux’s work to the inference of e j in triple (ei, rk, ?) in the following way. Each rule ρ
that predicts e j is used as a piece of evidence. The degree of support depends on the extensional dis-
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tance dist(ρ) = |ext(δl)| of the concept of neighbours δl that generated the rule, and on the confi-
dence of the rule. In order to have comparable pieces of evidence, we instantiate each by-analogy rule
Pl → (x, rk, y) for each possible value of y into a by-copy rule: Pl, (y = e j) → (x, rk, e j). Indeed,
by-analogy rules tend to be more general, and hence to have larger distances.

Because in KGs a head entity can be linked to several tail entities through the same relation, we
consider a distinct classification problem for each candidate tail entity e j ∈ E with two classes c1j (e j is
a tail entity) and c0j (e j is not a tail entity). For each candidate entity e j and each rule ρ predicting e j, the
degree of support can therefore be formalized by defining a mass distribution m j,ρ over sets of classes as
follows.

m j,ρ({c1j}) = α0 conf (ρ) e−dist(ρ) m j,ρ({c0j}) = 0 m j,ρ({c1j , c0j}) = 1− α0 conf (ρ) e−dist(ρ)

m j,ρ({c1j}) represents the degree of belief for e j being the tail entity, while m j,ρ({c1j , c0j}) represents
the degree of uncertainty. m j,ρ({c0j}) is set to 0 to reflect the OWA (Open World Assumption) of KGs
according to which a missing fact is not considered as false. Constant α0 determines the maximum
degree of belief, which can be lower than 1 to reflect uncertainty about known triples (e.g. 0.95). The
degree of belief decreases exponentially with distance. Finally, we make the degree of belief proportional
to the confidence of infering entity e j with rule ρ. In [24], that confidence factor does not exist because
it would be 1 for the class of the nearest neighbour, and 0 for every other class.

By applying Dempster-Shafer theory to combine the evidence from all rules ρ that predict entity e j,
we arrive at the following equation for the belief of each candidate tail entity e j.

Bel j = m j({c1j}) = 1−
∏
ρ

1− α0 conf (ρ) e−dist(ρ)

We can use that belief as a score to rank all predicted entities by decreasing belief. The score used by
AMIE+ is a special case of this score, where α0 = 1, dist(ρ) = 0 for all rules, and PCA confidence is
used instead of classical confidence.

6.3. Inference Algorithm and Explanations

7. Experiments

We here report on experiments comparing our approach to other approaches on several standard bench-
marks for link prediction. We first present the methodology, and study the impact on performance of
the different strategies and hyper-parameters of our approach. Then we report performance results on
benchmarks with an in-depth analysis, and finally present a fine-grained comparison with AnyBURL.
The companion page2 provides access to the source code, the datasets, and the experiment main results
and logs.

7.1. Methodology

Datasets. We use four datasets that are used in many work to evaluate the link prediction task (WN18,
WN18RR, FB15k, FB15k-237), plus an additional dataset that we derived from the Mondial dataset [25].

2Companion page: http://www.irisa.fr/LIS/ferre/pub/link_prediction2020/

http://www.irisa.fr/LIS/ferre/pub/link_prediction2020/
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Table 2
Statistics of datasets.

Dataset entities relations train edges valid. edges test edges
WN18 40 943 18 141 442 5 000 5 000
WN18RR 40 559 11 86 835 3 034 3 134
FB15k 14 951 1 345 483 142 50 000 59 071
FB15k-237 15 541 237 272 115 17 535 20,466
Mondial 2 473 20 8 456 570 701

Table 2 provides statistics about datasets (numbers of: entities, relations, train edges, validation edges,
and test edges). WN18 and FB15k were introduced by Bordes et al [7] for link prediction evaluation.
WN18 is derived from a subset of WordNet, and FB15k from FreeBase. In later work, it was observed
that many test triples had their inverse in the training set (e.g., hypernym is the inverse of hyponym in
WordNet), and could be solved with very simple rules (e.g., (y, hypernym, x)→ (x, hyponym, y)). More
challenging datasets were introduced by removing from the validation and test sets all pairs of entities
that occur in the training set. FB15k-237 was introduced by Toutanova and Chen [8], and WN18RR was
introduced by Dettmers et al. [9].

We introduce Mondial as a subset of the Mondial database [25], which contains facts about world
geography. We simplified it to the task of link prediction by removing labelling edges and edges con-
taining dates and numbers, and by unreifying n-ary relations into binary relations. Triples whose relation
is rdf:type were also removed from the validation and test sets because they do not represent proper
links between entities. The dataset is available from the companion page. It is smaller than other datasets
but it makes it easier to interpret results, and we use it to study the impact of the different strategies and
hyper-parameters without introducing a bias in our evaluation on the classical benchmarks.

Task. We follow the same protocol as introduced in [7], and followed by subsequent work. The task is
to infer, for each test triple, the tail entity from the head and the relation, and also the head entity from
the tail and the relation. We call test entity the known entity, and missing entity the entity to be infered.
We evaluate the performance of our approach by using the same three measures as in [17]: MRR and
Hits@{1,10} (given in percents in this paper). Like in previous work, we use filtered versions of those
measures to reflect the fact that, for instance, there may be several correct tail entities for a 1-n relation
(e.g., the relation from awards to nominees). For example, if the correct entity is at rank 7 but 2 out of
the first 6 entities form triples that belong to the dataset (and are therefore considered as valid), then it is
considered to be at rank 5.

Method. Because our approach has no training phase we can use both train and validation datasets as
examples for our instance-based inference. We consider a few alternative strategies:

• Random vs Ordered choice of a query element in the partitionning algorithm (see Section 5.2);
• by-copy vs by-analogy vs both kinds of inference rules (see Section 6.1);
• MC vs DS score for ranking infered entities (see Section 6.2).

Our approach has only three hyper-parameters (and no parameter to learn): the maximum depth of the
description of the test entity, and two timeouts: one for the computation of C-NNs, and another one for
the inference of an entity ranking. For the inference of a ranking of entities, we set λ = 2 in the definition
of rule confidence, and α0 = 0.95 in the DS-score.

The implementation of our approach has been integrated to SEWELIS as an improvement of previous
work on the guided edition of RDF graphs [26]. A standalone program for link prediction is available
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Table 3
Comparing MRR on Mondial with 12 different strategies

by-copy by-analogy by-copy+analogy
MC DS MC DS MC DS

Random 28.6 16.9 42.4 41.3 45.5 44.2
Ordered 30.1 19.2 33.7 30.8 40.2 37.3

from the companion page. We ran our experiments on Fedora 25, with CPU Intel(R) Core(TM) i7-
6600U @ 2.60GHz, and 16GB DDR4 memory. So far, our implementation is simple and uses a single
core, although our partitioning algorithm lends itself to parallelization. We have observed that in all our
experiments the memory footprint, which includes the training and validation triples, remains under a
few percents, i.e. a few hundreds MB. An alternative implementation3 for the computation of C-NNs
has recently been developed as a Java library on top of the Jena Framework4, in order to facilitate their
reuse in other applications.

Baselines. We compare our approach to a number of historical or state-of-the-art latent-based ap-
proaches: DISTMULT [27], ANALOGY [28], KB_LR [29], R-GCN+ [10], ConvE [9], ComplEx-
N3 [11], and CrossE [30]. We do so by choosing the same tasks and measures as in previous work
because it was not possible for us to run them ourselves (no access to a GPU), and also because it allows
for a fairer comparison (e.g., choice of hyper-parameters by authors). We also compare our approach
to rule-based approaches: AMIE+ [15], RuleN [16], and AnyBURL [17]. Most performance results of
the above approaches are reproduced from Meilicke et al. [17] (see Section 7.3 for details). We add yet
another baseline Freq that simply consists in ranking entities e j according to their decreasing frequency
of usage in rk over the train+valid dataset, as defined by f req j = |ans(x ← (x, rk, y), (y = e j))|. It is
independent of the test entity, and therefore acts as a default ranking.

7.2. Impact of Strategies and Hyper-parameters and Consistency of Results

Impact of strategies. Table 3 compares the obtained MRR (in percents) on the Mondial dataset with
different strategies. The timeout was set to 0.1s for both C-NN computation and inference, and the
maximum depth was set to 3. For recall, there are three axes composing the strategy:

• choice of a spliting element: Random vs Ordered;
• kinds of inference rules: by-copy vs by-analogy vs both (by-copy+analogy);
• aggregation of inferences: MC (max. confidence) vs DS (Dempster-Shafer).

This results in 12 different strategies, and Table 3 shows that the best performing combines Random,
by-copy+analogy, and MC. Looking more in detail, we observe that combining both kinds of rules
is always beneficial, as well as aggregating inferences with maximum confidence. However, Ordered
element choice is better with by-copy rules, while Random element choice is better with by-analogy
rules. We can also evaluate the importance of each axis by measuring the MRR decrease when replacing
the best option by another. The most important options are in order: by-analogy rules (-16.9), Random
choice (-5.3), by-copy rules (-3.1), and finally MC aggregation (-1.3). From now on, we only use the
best performing strategy.

3https://bitbucket.org/sebferre/conceptsofneighbours/
4https://jena.apache.org/

https://bitbucket.org/sebferre/conceptsofneighbours/
https://jena.apache.org/
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Table 4
Evolution of performance and internal parameters with timeout

timeout(s) Hits@1 Hits@10 MRR nb. concepts nb. inferred max. conf
0.001 15.7 31.8 21.2 3.7 103 0.20
0.01 32.3 51.3 38.9 11.9 211 0.42
0.1 38.6 59.1 45.5 35.0 311 0.57
1 39.3 63.7 47.3 89.2 351 0.66

Fig. 4. ROC curve of predicting Hits@1 correctness depending on maximum confidence threshold

Impact of timeout. Table 4 shows the evolution of a number of measures when timeout exponentially
increases from 1ms to 1s. There are three performance measures (Hits@1, Hits@10, MRR), followed
by three measures about the inference process, averaged over the test set: number of computed concepts
of neighbours, number of inferred entities, and maximum confidence over all inferred entities. It can be
observed that with only 1% of the largest timeout (timeout 0.01s vs 1s), the MRR is already at 82%
of the larger MRR, and 60% of the inferred entities are obtained, despite the fact that only 13% of the
concepts have been computed. This indicates that early approximations of concepts of neighbours are
already informative. Furthermore, increasing the timeout and hence the number of concepts does not
only improve MRR but also increases confidence in inferences as indicated by the steadily increasing
maximum confidence.

Impact of description depth. We have observed that increasing description depth beyond 2-3 makes
almost no significant difference on performance measures, as well as on the number of inferred entities
and on the maximum confidence. In the following, we therefore stick to a maximum description depth
equal to 3.

Consistency of results. To evaluate the consistency of the results of our approach, we perform two
analyses on the Mondial dataset (with timeout=0.1s). First, we analyze the variability of the performance
measures by spliting the test set 10-fold. We observe that the standard error accross the 10 folds is very
small for all measures: e.g., 0.5% for MRR, around 1% for Hits@1 and Hits@10, and 0.4% for maximum
confidence.
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Table 5
Comparison of performance results on WN18 and WN18RR

WN18 WN18RR
Approach source H@1 H@10 MRR H@1 H@10 MRR
Freq 1.8 5.0 2.9 1.5 4.4 2.6
Latent-based
DISTMULT [27] [10] 70.1 94.3 81.3 - - -
ANALOGY [28] [28] 93.9 - 94.2 - - -
KB_LR [29] [29] - 95.1 93.6 - - -
R-GCN+ [10] [17] 69.7 96.4 81.9 - - -
ConvE [9] [17] 93.5 95.5 94.2 39.0 48.0 46.0
ComplEx-N3 [11] [17] - 96.0 95.0 - 57.0 48.0
CrossE [30] [17] 74.1 95.0 83.0 - - -
Rule-based
AMIE+ [15] [17] 87.2 94.8 - 35.8 38.8 -
RuleN [16] [17] 94.5 95.8 - 42.7 53.6 -
AnyBURL [17] [17] 93.9 95.6 95.0 44.6 55.5 48.0
C-NN (ours) 96.7 97.2 96.9 44.4 51.9 46.9

C-NN − best other +2.2 +0.8 +1.9 -0.2 -5.1 -1.1
C-NN − best other rule-based +2.2 +1.4 +1.9 -0.2 -3.6 -1.1

Second, we analyze the relevance of the maximum confidence by measuring how predictive it is about
the correctness of predictions. Figure 4 shows the ROC curve for the classification task that consists in
predicting whether the top entity in the filtered ranking is correct based on the hypothesis that its associ-
ated maximum confidence is above a threshold varying from 0 to 1. For example, with threshold at 0.70,
the true positive rate is at 73% while the false positive rate is at 16%. The shape of the curve, as well
as its AUC (Area Under Curve) equal to 84%, demonstrate the relevance of the maximum confidence
to estimate the validity of predictions. This comes in complement with interpretable explanations for
inferred entities in the form of rules.

7.3. Results on Benchmarks

Tables 5 and 6 compare the results of our approach (C-NN) to other approaches presented above as
baselines on the four datasets WN18, WN18RR, FB15k, and FB15k-237. The baselines are organized
in three groups: naive baseline Freq, latent-based approaches, and rule-based approaches. In each group,
approaches are sorted by publication year. The source indicates which paper the results are taken from.
The results for AnyBURL are those where 1000s (largest available time) are allocated to the computa-
tion of rules. In the results of C-NN, the timeouts (computation of concepts + inference) are 1+1s for
WN datasets, and 1.5+0.5s for FB datasets. The output logs of C-NN predictions and explanations are
available from the companion page.

ComplEx-N3 clearly outperforms other approaches on all datasets except WN18 where C-NN outper-
forms other approaches on the three measures. C-NN comes second on FB15k, and remains close to the
best approaches on WN18RR. On FB15k-237, the MRR delta is -7.4 with ComplEx-N3, but only -0.4
with AnyBURL, the best rule-based approach. It is noteworthy that C-NN is competitive with AnyBURL
because, whereas AnyBURL rules are computed in a supervised manner (knowing the target relation rk),
C-NN concepts are computed in an unsupervised manner (i.e, only knowing the source entity ei). This
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Table 6
Comparison of performance results on FB15k and FB15k-237

FB15k FB15k-237
Approach source H@1 H@10 MRR H@1 H@10 MRR
Freq 14.3 28.5 19.2 17.5 35.6 23.6
Latent-based
DISTMULT [27] [10] 52.2 81.4 63.4 10.6 37.6 19.1
ANALOGY [28] [28] 64.6 - 72.5 - - -
KB_LR [29] [29] 74.2 87.3 79.0 22.0 48.2 30.6
R-GCN+ [10] [17] 60.1 84.2 69.6 15.1 41.7 24.9
ConvE [9] [17] 67.0 87.3 74.5 23.9 49.1 31.6
ComplEx-N3 [11] [17] - 91.0 86.0 - 56.0 37.0
CrossE [30] [17] 63.4 87.5 72.8 21.1 47.4 29.9
Rule-based
AMIE+ [15] [17] 64.7 85.8 - 17.4 40.9 -
RuleN [16] [17] 77.2 87.0 - 18.2 42.0 -
AnyBURL [17] [17] 80.4 89.0 83.0 23.0 47.9 30.0
C-NN (ours) 82.7 89.0 84.9 22.2 44.6 29.6

C-NN − best other +2.3 -2.0 -1.1 -1.7 -11.4 -7.4
C-NN − best other rule-based +2.3 0.0 +1.9 -0.8 -3.3 -0.4

Table 7
Split of test sets depending on the kind of inference rule (by-copy vs by-analogy).

WN18 WN18RR FB15k Fb15k-237
measure by-c by-a by-c by-a by-c by-a by-c by-a
percent 2% 98% 38% 57% 14% 85% 73% 25%
Hits@1 15.0 98.7 15.2 67.8 37.0 91.0 26.2 12.2
Hits@10 34.4 98.8 29.4 71.6 63.5 94.2 49.9 32.3
MRR 22.0 98.7 19.9 69.1 47.0 92.1 34.1 18.7
max. conf 0.24 0.96 0.28 0.70 0.60 0.88 0.61 0.66

implies that the concepts of neighbours of an entity can be computed once, and used for many different
inference tasks, e.g. predicting links for several target relations.

Looking at the Freq baseline, it becomes visible how FB15k-237 is difficult because performance
improvements over Freq are relatively small while they are huge on other datasets.

7.4. In-depth Analysis of Results

In this section, we refine the performance evaluation of our approach by analysing results w.r.t two
criteria: (a) the kind of rule (by-copy vs by-analogy) that inferred the rank-1 predictions, (b) the charac-
teristics of the relation to be predicted.

Prediction by-copy vs by-analogy. We here analyze predictions according to the kind of the best rule,
i.e. the rule with highest confidence, which contributed to decide the first entity in the generated ranking.
For recall, there are two kinds of rules: by-copy rules and by-analogy rules (see Section 6.1). Table 7
shows the performance measures, and maximum confidence, on two subsets of the test set for each
dataset, depending on the kind of the best rule. Line “percent” gives the relative size of those subsets.
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Fig. 5. MRR as a function of relation degree. Bubble sizes are proportional to relation frequency.

The two percentages may not sum up to 100% because for some test cases, no prediction could be made:
e.g., all predicted entities are already known to hold, and are therefore filtered out.

The balance between by-copy and by-analogy can be explained by the nature of each dataset. In
WN18 and FB15k it is well known that most test triples can be inferred from an inverse triple, which is
well captured with by-analogy rules: e.g., hypernym(y, x) → hyponym(x, y). In FB15k-237, all inverse
triples have been removed, and for many relations, some candidate entities are much more frequent than
others: e.g., US nationality for people. Those frequent entities are easily inferred with by-copy rules. In
WN18RR, by-analogy rules remain dominant for two reasons. First, inverse relations have been removed
(e.g., hyponym as inverse of hypernym), but other inverse triples have been retained. In particular, sym-
metric relations such as similar_to and derivationally_related_form are still present, and account for
about one third of test triples. Second, there are much less situations like “US nationality”, where a
single word would dominate in a relation. The performance measures (Hits@1, Hits@10, MRR) are
consistent with the balance between by-copy and by-analogy: measures are better for the most frequent
kind of rule. However, it appears that by-analogy rules always have a higher confidence on average. We
hypothesize that this is because by-analogy inference relies on the similarity with not only entity ei but
with pair of entities (ei, e j), and involves an explicit relationship between ei and e j, expressed as a graph
pattern.

Results depending on relation characteristics. Relations are not all alike in knowledge graphs. They
vary in frequency, and whether they are functional or multi-valued. We here define the frequency of a
relation r as the number of test triples using it; and its degree as the average number of tail entities per
head entity in the training set. When the degree equals (or is closed to) 1, the relation is said functional,
otherwise it is said multi-valued. As the benchmarks imply to predict both the tail from the head, and
the head from the tail, we also consider inverse relations. Their frequency is the same, and their degree
is the average number of head entities per tail entity. The degree of the inverse relation is unrelated to
the degree of the relation, and all combinations are possible, i.e. 1-1, n-1, 1-n, and n-n relations.

Figure 5 shows a bubble plot of the 224 relations and their inverses, which are found in the test set
of FB15k-237, the most challenging dataset. Each buble is positioned according to its degree (ranging
from 1 to 4000), and to the MRR of its predictions (ranging from 0 to 1). The bubble size reflects the
frequency of the relation, and hence its weight in the global performance measures. Several observations
can be made. First, the relations cover a wide range of frequencies and degrees, and there are no obvious
correlation between those two dimensions. Second, there is a clear tendency that the higher the degree,
the lower the MRR, i.e. multi-valued relations are harder to predict than functional relations. However,
many relations stand under and above this tendency. Some relations have a low MRR despite a low de-
gree (e.g., place of birth); and some relation succeeds to have a high MRR despite degrees up to 50 (e.g.,
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Table 8
Distribution of test instances depending of Hits@1 success of C-NN and AnyBURL. The last two columns give the average
Hits@1 first for the best of the two approaches, and second for the best ensemble.

H@1 C-NN / H@1 AnyBURL H@1
dataset nb. test 1 / 1 1 / 0 0 / 1 0 / 0 best of two best ensemble
WN18 10 100 93.2 3.4 0.9 2.5 96.6 97.5
WN18RR 6 268 41.3 3.1 3.6 52.0 44.9 48.0
FB15k 118 142 75.3 7.4 5.5 11.8 82.7 88.2
FB15k-237 40 932 17.5 4.7 6.2 71.6 23.7 28.4

inverse of food nutrient with degree=15). Examples of frequent relations with high MRR are: people
nationality (degree=1.1, MRR=79.3), people gender (degree=1, MRR=90.4), topic webpage category
(degree=1, MRR=100), marriage type of union (degree=1.1, MRR=100), award winners ceremony (de-
gree=12, MRR=71.4), and its inverse (degree=22, MRR=70.1).

7.5. Detailed Comparison with AnyBURL

In this section, we detail the comparison with predictions made by AnyBURL5. Indeed, AnyBURL is
the state-of-the-art among rule-based approaches. The main question we answer here is: How predictions
differ between C-NN and AnyBURL. Table 8 gives for the four datasets the distribution of test instances
into four cases depending on the Hits@1 success of each approach (C-NN and AnyBURL). If the rank-
1 predicted entity is correct, then Hits@1 equals 1, otherwise it equals 0. Case 1/1 means that both
approaches are correct, case 1/0 means that C-NN is correct but not AnyBURL, etc. The four cases sum
up to 100%.

We consider the null hypothesis that if one approach has lesser performance, then its set of correct
predictions is a subset of the correct predictions of the other approach. For instance, on FB15k-237
where AnyBURL is better, we expect that case 0/1 is empty. This is contradicted in all four datasets. For
instance, on FB15k-237, C-NN is the only correct approach for 4.7% test instances, which amounts to
1918 test instances. Those results demonstrate that C-NN and AnyBURL can complement each other,
and that improvement of state-of-the-art performances remains possible. This is made explicit in the last
two columns that allow to compare Hits@1 of the best of the two approaches and the best ensemble of
the two (union of correct predictions).

We now detail a few test instances where C-NN and AnyBURL differ (cases 1/0 and 0/1). The anal-
ysis is limited by the fact that AnyBURL’s code does not output rules as explanations for predictions
(although the code could be modified to do so). Here are a few test instances where C-NN succeeds
while AnyBURL fails:

• Wichita falls were correctly predicted to have Central Time Zone because it is contained in Texas
(by-copy rule, support=31, confidence=0.79);

• Joe Shuster was correctly predicted to have written “Superman II: The Richard Donner Cut” be-
cause he has produced a story that was honored for the film, and he won some award (by-analogy
rule, support=5, confidence=0.36);

• Joe Shuster was also correctly predicted to live in Cleveland because he has produced the story
“Superman II” (by-copy rule, support=1, confidence=0.33);

5Detailed predictions for state-of-the-art latent-based approaches are not available, and specific hardware (GPUs) is required
to run them in a reasonable amount of time.
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• Film “Good Will Hunting” was correctly predicted to have two crew roles “make-up artist” and
“special effects supervisor” because it was nominated for the “Satellite Award for Best Original
Screenplay” (by-copy rule, support=16, confidence=0.78).

Those C-NN rules could be found by AnyBURL, so they do not exhibit real limits of AnyBURL. How-
ever, all those rules except the second contain equality filters (constants in AnyBURL’s terminology),
and the number of such rules is extremely large, even for small rules, because of the high number of
entities in KGs. C-NN here has the advantage that it only needs to generate rules for a given test instance
(instance-based learning), while AnyBURL has to generate the rules before seeing any test instance
(model-based learning). We can therefore expect C-NN to have a better coverage of such rules.

Now, here are test instances where C-NN fails while AnyBURL succeeds. In each instance, we give
the best C-NN rule, which fails, and then the “successful C-NN rule”, i.e. the highest-confidence rule
found by our approach that infer the correct entity.

• Lily Tomlin was incorrectly predicted to be nominated for TV series “Murphy Brown”, instead
of “The West Wing” (predicted 2nd), because he is an actor of the TV series, and won an award
(by-analogy rule, support=364, confidence=0.53). The successful rule predicts “The West Wing”
because he was nominated along with Joshua Malina (by-copy rule, support=14, confidence=0.50);

• Film “Life is beautiful” was incorrectly predicted to have genre Italian, instead of War Film (pre-
dicted 8th), because it appears on the title list of the Netflix genre “Italian” (by-analogy rule, sup-
port=393, confidence=0.56). The successful rule predicts War Film because it was produced in Italy
(by-copy rule, support=14, confidence=0.25).

It is difficult to derive conclusions without knowing the successful AnyBURL’s rules. Still, it can be
observed that errors made by C-NN are reasonable ones. In the second example, the successful rule has
weaker measures of support and confidence, and is less intuitive than the unsuccessful one. In reality,
the film “Life is beautiful” has both genres “Italian” and “War Film”, but the gold standard only contains
the second. One must keep in mind that what is used as gold standard in those experiments are actually
incomplete (and possibly incorrect) knowledge graphs.

8. Conclusion

We have shown that a symbolic approach to the problem of knowledge graph completion can be com-
petitive with state-of-the-art approaches, both latent-based and rule-based. This comes with the major
advantage that our approach can provide detailed explanations for each inference, in terms of the graph
features. Compared to rule-based approaches, which can provide similar explanations, we avoid the need
for a training phase that can be costly in runtime and memory (rule mining), in particular with dynamic
data. Our approach is analogous to classification with k-nearest neighbours but our distances are defined
as partially-ordered graph concepts instead of numbers.

There are many tracks for future work. Extending graph patterns with n-ary relations and richer filters
over numbers, dates, etc. Optimizing the computation of C-NNs by finding good strategies to drive
the partitioning process, or by parallelizing it. Evaluating our approach on other datasets, and other
inference tasks.
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