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Abstract. The major application areas of reinforcement learning (RL) have traditionally been game playing and continuous
control. In recent years, however, RL has been increasingly applied in systems that interact with humans. RL can personalize
digital systems to make them more relevant to individual users. Challenges in personalization settings may be different from
challenges found in traditional application areas of RL. An overview of work that uses RL for personalization, however, is
lacking. In this work, we introduce a framework of personalization settings and use it in a systematic literature review. Besides
setting, we review solutions and evaluation strategies. Results show that RL has been increasingly applied to personalization
problems and realistic evaluations have become more prevalent. RL has become sufficiently robust to apply in contexts that
involve humans and the field as a whole is growing. However, it seems not to be maturing: the ratios of studies that include a
comparison or a realistic evaluation are not showing upward trends and the vast majority of algorithms are used only once. This
review can be used to find related work across domains, provides insights into the state of the field and identifies opportunities
for future work.
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1. Introduction

For several decades, both academia and commerce have sought to develop tailored products and ser-
vices at low cost in various application domains. These reach far and wide, including medicine [1, 2],
human-computer interaction [3, 4], product, news, music and video recommendations [5-7] and even
manufacturing [8, 9]. When products and services are adapted to individual tastes, they become more
appealing, desirable, informative, e.g. relevant to the intended user than one-size-fits all alternatives.
Such adaptation is referred to as personalization [10].

Digital systems enable personalization on a grand scale. The key enabler is data. While the software on
these systems is identical for all users, the behavior of these systems can be tailored based on experiences
with individual users. For example, Netflix’s' digital video delivery mechanism includes tracking of
views and ratings. These ease the gratification of diverse entertainment needs as they enable Netflix
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to offer instantaneous personalized content recommendations. The ability to adapt system behavior to
individual tastes is becoming increasingly valuable as digital systems permeate our society.

Recently, reinforcement learning (RL) has been attracting substantial attention as an elegant paradigm
for personalization based on data. For any particular environment or user state, this technique strives
to determine the sequence of actions to maximize a reward. These actions are not necessarily selected
to yield the highest reward now, but are typically selected to achieve a high reward in the long term.
Returning to the Netflix example, the company may not be interested in having a user watch a single
recommended video instantly, but rather aim for users to prolong their subscription after having enjoyed
many recommended videos. Besides the focus on long-term goals in RL, rewards can be formulated in
terms of user feedback so that no explicit definition of desired behavior is required [11, 12].

RL has seen successful applications to personalization in a wide variety of domains. Some of the
earliest work, such as [13], [14] and [15] focused on web services. More recently, [16] showed that
adding personalization to an existing online news recommendation engine increased click-through rates
by 12.5%. Applications are not limited to web services, however. As an example from the health domain,
[17] achieve optimal per-patient treatment plans to address advanced metastatic stage IIIB/IV non-small
cell lung cancer in simulation. They state that ‘there is significant potential of the proposed methodology
for developing personalized treatment strategies in other cancers, in cystic fibrosis, and in other life-
threatening diseases’. An early example of tailoring intelligent tutor behavior using RL can be found
in [18]. A more recent example in this domain, [19], compared the effect of personalized and non-
personalized affective feedback in language learning with a social robot for children and found that
personalization significantly impacts psychological valence.

Although the aforementioned applications span various domains, they are similar in solution: they all
use traits of users to achieve personalization, and all rely on implicit feedback from users. Furthermore,
the use of RL in contexts that involve humans poses challenges unique to this setting. In traditional RL
subfields such as game-playing and robotics, for example, simulators can be used for rapid prototyping
and in-silico benchmarks are well established [20-23]. Contexts with humans, however, may be much
harder to simulate and the deployment of autonomous agents in these contexts may come with different
concerns regarding for example safety. When using RL for a personalization problem, similar issues
may arise across different application domains. An overview of RL for personalization across domains,
however, is lacking. We believe this is not to be attributed to fundamental differences in setting, solution
or methodology, but stems from application domains working in isolation for cultural and historical
reasons.

This paper provides an overview and categorization of RL applications for personalization across a
variety of application domains. It thus aids researchers and practictioners in identifying related work
relevant to a specific personalization setting, promotes the understanding of how RL is used for per-
sonalization and identifies challenges across domains. We first provide a brief introduction of the RL
framework and formally introduce how it can be used for personalization. We then present a framework
to classify personalization settings by. The purpose of this framework is for researchers with a specific
setting to identify relevant related work across domains. We then use this framework in a systematic
literature review (SLR). We investigate in which settings RL is used, which solutions are common and
how they are evaluated: Section 4 details the SLR protocol, results and analysis are described in Sec-
tion 5. All data collected has been made available digitally [24]. Finally, we conclude with current trends
challenges in Section 6.
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Fig. 1. The agent-environment in RL for personalization from [25].
2. Reinforcement learning for personalization

RL considers problems in the framework of Markov decision processes or MDPs. In this framework,
an agent collects rewards over time by performing actions in an environment as depicted in Figure 1.
The goal of the agent is to maximize the total amount of collected rewards over time. In this section, we
formally introduce the core concepts of MDPs and RL and include some strategies to personalization
without aiming to provide an in depth introduction to RL. We refer the reader to [25], [26] and [27] for
such an introduction.

An MDP is defined as a tuple (S,A,T,R,y) where S € {s1,...,s,} is a finite set of states,
A € {a1,...,a,} a finite set of system actions, T : S x A x § — [0, 1] a probabilistic transition
function, R : § x A — R a reward function and y € [0,1] a factor to discount future rewards. At
each time step ¢, the system is confronted with some state s’, performs some action @’ which yields
a reward 1 : R(s',a’) and some state s'*! following the probability distribution T'(s',a’). A se-
ries of these states, actions and rewards from the onset to some terminal state 7 is called a trajectory
tr: (s9,a% /0, st .. .,a" 1, r"=1, sT). These trajectories typically contain the interaction histories for
users with the system. A single trajectory can describe a single session of the user interacting with the
system or can contain many different separate sessions. Multiple trajectories may be available in a data
set D € {tr1,...,tr;}. The goal is to find a policy 7* out of all IT : § x A — [0, 1] that maximizes the
sum of future rewards at any ¢, given an end time 7

7—1
G - Zyk_trkH (D

k=t

If some expectation [E over the future reward for some policy 7 can be formulated, a value can be
assigned to some state s given that policy:

Va(s) = Ez[G'|s" = 5] 2)
Similarly, a value can be assigned to an action a in a state s:
Ox(s,a) = E;[G'|s" = s,d' = d] 3)

Now the optimal policy 7* should satisfy Vs € S,Vr € I1 : Vi« (s5) > Vi(s) and Vs € S,a € A,Vr € 11 :
O+ (s,a) = Ox(s,a). Assuming a suitable E,«[G], 7* consists of selecting the action that is expected to
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yield the highest sum of rewards:

n*(s) = arg maxQ,«(s,a),Vs € S,a € A 4)

With these definitions in place, we now turn to methods of finding 7*. Such methods can be categorized
by considering which elements of the MDP are known. Generally, S, A and y are determined upfront and
known. T and R, on the other hand, may or may not be known. If they are both known, the expectation
E,[G] is directly available and a corresponding 7* can be found analytically. In some settings, however,
T and R may be unknown and 7* must be found empirically. This can be done by estimating 7', R, V, Q
and finally 7* or a combination thereof using data set D. Thus, if we include approximations in Eq. (4),
we get:

7*(5)|D = arg max Q. (s,a)|D,Vs € S,a € A ®)

As D may lack the required trajectories for a reasonable [E - [G] and may even be empty initially, ex-
ploratory actions can be selected to enrich D. Such actions need not follow 7* as in Eq. (5) but may be
selected through some other mechanism such as sampling from the full action set A randomly.

Having introduced RL briefly, we continue by exploring some strategies in applying this framework
to the problem of personalizing systems. We consider a set of n users U € {uj,...,u,}. In some set-
tings, users can be described using a function that returns a vector representation of the [ features that
characterize auser ¢ : U — (¢1(U),...,¢,(U)). A first way to adapt software systems to an individual
users’ needs is to define a separate MDP and corresponding RL agent for each user. All of the concepts
introduced before can be indexed with subscript i for user #; and the overall goal becomes to find an
optimal policy per user: {n},...,7; }. In the case of approximations as in Eq. (5), these are made per
user based on data set D; with trajectories only involving that user. The benefit of isolated MDPs is that
differences between T; and T'; or between R; and R; for users u;, u;, u; # u; are handled naturally, e.g.
such differences do not make E,,[G] incorrect. On the other hand, similarities between 7;,T; and R;, R;
cannot be used and every agent has to relearn the task at hand for each user individually. This may re-
quire a substantial number of experiences per user and may be infeasible in some settings, such as those
where users cannot be identified across trajectories or those where each user is expected to contribute
only one trajectory to D.

An alternative approach to finding per-user optimal policies {n7,..., 7} is to alter the state space
S to include information about the user on top of information about the task at hand and then learn a
single 7* for all users [28]. A natural extension of the state space S to S’ is to add the feature vector
representation of users ¢(U) to S. This approach can be valuable when it is unclear which experiences
of users u; # u; should be used in determining 7}, i.e. when no suitable M can be defined upfront.
Conceptually, finding 7*(s’) where s € S’ now includes determining u;’s preference for actions given
a state and determining the relationship between user preferences. This approach should therefore be
able to overcome the negative transfer problem described below when enough trajectories are available.
The growth in state space size, on the other hand, may require an exorbitant number of trajectories in D
due to the curse of dimensionality [29]. Thus, ¢ is to be carefully designed or dimensionality reduction
techniques are to be used in approaches following this strategy. As a closing remark on this approach to
personalization, we note that the distinction between S and S’ is somewhat artificial as S may already
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contain ¢(U) in many practical settings and we stress that the distinction is made for illustrative purposes
here.

A third category of approaches can be considered as a middle ground between learning a single 7* and
learning a pi* per user. It is motivated by the idea that trajectories of similar users u; # u; may prove
useful in estimating E.,[G]. One such an approach is based on clustering similar users [18, 30-32]. It
requires ¢ < o groups G € {gi,...,8,} and a mapping function M : U — G. One MDP and RL
agent are defined for every g, to interact with users u;, u;, M(u;) = M(u;) = g,. Trajectories in D; and
D; are concatenated or pooled to form a single D, which is used to approximate E [G] for all u;, u;.
A combined D, may be orders of magnitude bigger than an isolated D;, which may result in a much
better approximation E,[G]|D, and a resulting 7?;2(s)|Dp that yields a higher reward for all users. A
related approach similarly uses experiences D; of other users u; # u; but still aims to find per-user 7;.
Trajectories in D; are weighted during estimation of E,, [G] using some weighting scheme. This can be
understood as a generalization of the pooling approach. First, recall that M : U — G for the pooling
approach and note that it can be rewritten to M : U x U — {0, 1}. The weighting scheme, now, is a
generalization where M : U x U — R. Finding a suitable M can be challenging in itself and depends
on the availability of user features, trajectories and the task at hand. Typical strategies are to define M
in terms of similarity of feature representations [¢(u;), #(u;)| and similarity of D;, D;. The two previous
approaches work under the assumption that 7;, T'; and R;, R; are similar and that M is suitable. If either
of these assumptions is not met, pooling data may result in a policy that is suboptimal for both u; and u;.
This phenomenon is typically referred to as the negative transfer problem [33].

3. A classification of personalization settings

Personalization has many different definitions [10, 34, 35]. We adopt the definition proposed in [10]
as it is based on 21 existing definitions found in literature and suits a variety of application domains:
“personalization is a process that changes the functionality, interface, information access and content,
or distinctiveness of a system to increase its personal relevance to an individual or a category of indi-
viduals”. This definition identifies personalization as a process and mentions an existing system subject
to that process. We include aspects of both the desired process of change and existing system in our
framework. Section 4.4 further details how this framework was used in a SLR.

Table 1 provides an overview of the framework. On a high level, we distinguish three categories.
The first category contains aspects of suitability of system behavior. We differentiate settings in which
suitability of system behavior is determined explicitly by users and settings in which it is inferred by the
system after observing user behavior [36]. For example, a user can explicitly rate suitability of a video
recommendation; a system can also infer suitability by observing whether the user decides to watch the
video. Whether implicit or explicit feedback is preferable depends on availability and quality of feedback
signals [36, 37]. Besides suitability, we consider safety of system behavior. Unaltered RL algorithms
use trial-and-error style exploration to optimize their behavior. If safety is a significant concern in the
systems’ application domain, specifically designed safety-aware RL techniques may be required, see
[38] and [39] for overviews of such techniques.

Aspects in the second category deal with the availability of upfront knowledge. Firstly, knowledge
of how users respond to system actions may be captured in user models. Such models open up a range
of RL solutions that require less or no sampling of new interactions with users [40]. Models can also
be used to interact with the RL agent in simulation. Secondly, upfront knowledge may be available in
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Table 1

Framework to categorize personalization setting by.

Category A#  Aspect Description Range
o Al  Control The extent to which the user defines the suitability =~ Explicit - im-
Suitability of behavior explicitly. plicit
outcome A2 Safety The extent to which safety is of importance. Trivial - critical
A3 User models The a priori availability of models that describe  Unavailable -
Upfront user responses to system behavior. unlimited
knowledge A4 Data availability =~ The a priori availability of human responses to sys- ~ Unavailable -
tem behavior. unlimited
A5 Interaction The availability of new samples of interactions Unavailable -
availability with individuals. unlimited
New A6 Privacy sensitiv-  The degree to which privacy is a concern. Trivial - critical
Experiences ity
A7 State  observ- The degree to which all information to base per-  Partial - full
ability sonalization can be measured.

the form of data on human responses to system behavior. This data can be used to derive user models
and can be used to optimize policies directly and provide high-confidence evaluations of such policies
[41, 42].

The third category details new experiences. Empirical RL approaches have proven capable of mod-
elling extremely complex dynamics, however, this typically requires complex estimators that in turn
need substantial amounts of training data. The availability of users to interact with is therefore a major
consideration when designing an RL solution. A second aspect that relates to the use of new experiences
is privacy sensitivity of the setting. Privacy sensitivity is of importance as it may restrict sharing, pooling
or any other specific usage of data [43]. Finally, we identify the state observability as a relevant aspect. In
some settings, the true environment state cannot be observed directly but must be estimated using avail-
able observations. This may be common as personalization exploits differences in mental [7, 44, 45] and
physical state [46, 47], both of which may be hard to measure accurately [48—50].

Although aspects in Table 1 are presented separately, we explicitly note that they are not mutually
independent. Settings where privacy is a major concern, for example, are expected to typically have
less existing and new interactions available. Similarly, safety requirements will impact new interaction
availability. Presence of upfront knowledge is mostly of interest in settings where control lies with the
system as it may ease the control task. In contrast, user models may be marginally important if desired
behavior is specified by the user in full. Finally, a lack of upfront knowledge and partial observability
complicates adhering to safety requirements.

4. systematic literature review

A SLR is ‘a form of secondary study that uses a well-defined methodology to identify, analyze and
interpret all available evidence related to a specific research question in a way that is unbiased and (to
a degree) repeatable’ [51]. PRISMA is a standard for reporting on SLRs and details eligibility criteria,
article collection, screening process, data extraction and data synthesis [52]. This section contains a
report on this SLR according to the PRISMA statement. This SLR was a collaborative work to which all
authors contributed. We denote authors by abbreviation of their names, e.g. FDH, EG, AEH and MH.
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4.1. Inclusion criteria

Studies in this SLR were included on the basis of three eligibility criteria. To be included, articles had
to be published in a peer-reviewed journal or conference proceedings in English. Secondly, the study had
to address a problem fitting to our definition of personalization as described in Section 3. Finally, the
study had to use a RL algorithm to address such a personalization problem. Here, we view contextual
bandit algorithms as a subset of RL algorithms and thus included them in our analysis. Additionally, we
excluded studies in which a RL algorithm was used for purposes other than personalization.

4.2. Search strategy

Figure 2 contains an overview of the SLR process. The first step is to run a query on a set of databases.
For this SLR, a query was run on Scopus, IEEE Xplore, ACM’s full-text collection, DBLP and Google
Scholar on June 6, 2018. Scopus and IEEE Xplore support queries on title, keywords and abstract.
ACM’s full-text collection, DBLP and Google scholar do not support queries on keywords and abstract
content. We therefore ran two kinds of queries: we queried on title only for ACM’s full-text collection,
DBLP and Google Scholar and we extended this query to keywords and abstract content for Scopus and
IEEE Xplore. The query was constructed by combining techniques of interest and keywords for the per-
sonalization problem. For techniques of interest the terms ‘reinforcement learning” and ‘contextual ban-
dits’ were used. For the personalization problem, variations on the words ‘personalized’, ‘customized’,
‘individualized’ and ‘tailored’ were included in British and American spelling. All queries are listed in
Appendix A. Query results were de-duplicated and stored in a spreadsheet.

4.3. Screening process

In the screening process, all query results are tested against the inclusion criteria in two phases. In
the first phase, studies are assessed based on keywords, abstract and title. For this phase, the spreadsheet
with de-duplicated results was shared with all authors via Google Drive. Studies were assigned randomly
to authors who scored each study by the eligibility criteria. The results of this screening were verified
by one of the other authors, assigned randomly. Disagreements were settled in meetings involving those
in disagreement and FDH if necessary. In addition to eligibility results, author preferences for full-text
screening were recorded on a three-point scale. Studies that were not considered eligible were not taken
into account beyond this point. All other studies were included in the second phase. Data on studies
in this phase were copied to a new spreadsheet to which columns were added for all data items. This
sheet was again shared via Google Drive. Full texts were retrieved and evenly divided amongst authors
according to preference. For each study, the assigned author then assessed eligibility based on full text
and extracted the data items detailed below.

4.4. Data items

Data on setting, solution and methodology were collected. Table 2 contains all data items for this
SLR. For data on setting, we operationalized our framework from Table 1 in Section 3. To assess trends
in solution, algorithms used, number of MDP models (see Section 2) and training regime were recorded.
Specifically, we noted whether training was performed by interacting with actual users (‘live’), using
existing data and a simulator of user behavior. For the algorithms, we recorded the name as used by
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Fig. 2. Overview of the SLR process.

the authors. To gauge maturity of the proposed solutions and the field as a whole, data on the evalu-
ation strategy and baselines used were extracted. Again, we listed whether evaluation included ‘live’
interaction with users, existing interactions between systems and users or using a simulator. Finally,
publication year and application domain were registered to enable identification of trends over time and
across domains. The list of domains was composed as follows: during phase one of the screening pro-
cess, all authors recorded a domain for each included paper, yielding a highly inconsistent initial set of

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46



0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

8 F. den Hengst et al. / Reinforcement learning for personalization: a systematic literature review

Table 2
Data items in SLR. The last column relates data items to aspects of setting from Table 1 where applicable.

Category #  Dataitem Values A#
1 User defines suitability of system behavior explicitly Yes, No Al

2 Suitability of system behavior is derived Yes, No Al

3 Safety is mentioned as a concern in the article Yes, No A2

Setting 4 Privacy is mentioned as a concern in the article Yes, No A6
5 Models of user responses to system behavior are available Yes, No A3

6  Data on user responses to system behavior are available Yes. No A4

7  New interactions with users can be sampled with ease Yes, No AS

8  All information to base personalization on can be measured Yes, No A7

9  Algorithms N/A -

10 Number of learners 1, 1/user, 1/group, multiple -

11 Usage of traits of the user state, other, not used -

Solution 12 Training mode online, batch, other, unknown -
13 Training in simulation Yes, No A3
14 Training on a real-life dataset Yes, No A4

15 Training in ‘live’ setting Yes, No A5

16  Evaluation in simulation Yes, No A3
17  Evaluation on a real-life dataset Yes, No A4

Evaluation 18  Evaluation in ‘live’ setting Yes, No AS
19  Comparison with ‘no personalization’ Yes, No -

20  Comparison with non-RL methods Yes, No -

domains. This set was simplified into a more consistent set of domains which was used during full-text
screening. For papers that did not fall into this consistent set of domains, two categories were added: a
‘Domain Independent’ and an ‘Other’ category. The actual domain was recorded for the five papers in
the ‘Other’ category. These domains were not further consolidated as all five papers were assigned to
unique domains not encountered before.

4.5. Synthesis and analysis

To facilitate analysis, reported algorithms were normalized using simple text normalization and key-
collision methods. The resulting mappings are available in the dataset release [24]. Data was summarized
using descriptive statistics and figures with an accompanying narrative to gain insight into trends with
respect to settings, solutions and evaluation over time and across domains.

5. Results

The quantitative synthesis and analyses introduced in Section 4.5 were applied to the collected data.
In this section, we present insights obtained. We focus on the major insights and encourage the reader to
explore the tabular view in Appendix B or the collected data for further analysis [24].

Before diving into the details of the study in light of the classification scheme we have proposed, let
us first study some general trends. Figure 3 shows the number of publications addressing personalization
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Fig. 3. Included papers over time and across domains. Note that only studies published prior to the query date of June 6, 2018
were included.

using RL techniques over time. A clear increase can be seen. With over forty entries, the health domain
contains by far the most articles, followed by entertainment, education and commerce with all approx-
imately just over twenty five entries. Other domains contain less than twelve papers in total. Figure 4a
shows the popularity of domains for the five most recent years and seems to indicate that the number
of articles in the health domain is steadily growing, in contrast with the other domains. Of course, these
graphs are based on a limited number of publications, so drawing strong conclusions from these results
is difficult. We do need to take into account that the popularity of RL for personalization is increasing
in general. Therefore Figure 4b shows the relative distribution of studies over domains for the five most
recent years. Now we see that the health domain is just following the overall trend, and is not becoming
more popular within studies that use RL for personalization. We fail to identify clear trends for other
domains from these figures.

5.1. Setting

Table 3 provides an overview of the data related to setting in which the studies were conducted. The
table shows that user responses to system behavior are present in a minority of cases (66/166). Addition-
ally, models of user behavior are only used in around one quarter of all publications. The suitability of
system behavior is much more frequently derived from data (130/166) rather than explicitly collected by
users (39/166). Privacy is clearly not within the scope of most articles, only in 9 out of 166 cases do we
see this issue explicitly mentioned. Safety concerns, however, are mentioned in a reasonable proportion
of studies (30/166). Interactions can generally be sampled with ease and the resulting information is
frequently sufficient to base personalization of the system at hand on.

Let us dive into some aspects in a bit more detail. A first trend we anticipate is an increase of the
fraction of studies working with real data on human responses over the years, considering the digitization
trend and associated data collection. Figure 5a shows the fraction of papers for which data on user
responses to system behavior is available over time. Surprisingly, we see that this fraction does not show
any clear trend over time. Another aspect of interest relates to safety issues in particular domains. We
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Table 3
Number of Publications by aspects of setting.

Aspect #
User defines suitability of system behavior explicitly 39
Suitability of system behavior is derived 130
Safety is mentioned as a concern in the article 30
Privacy is mentioned as a concern in the article 9
Models of user responses to system behavior are available 41
Data on user responses to system behavior are available 66
New interactions with users can be sampled with ease 97
All information to base personalization on can be measured | 132

hypothesize that in certain domains, such as health, safety is more frequently mentioned as a concern.
Figure 5b shows the fraction of papers of the different domains in which safety is mentioned. Indeed,
we clearly see that certain domains mention safety much more frequently than other domains. Third, we
explore the ease with which interactions with users can be sampled. Again, we expect to see substantial
differences between domains. Figure 6 confirms our intuition. Interactions can be sampled with ease
more frequently in studies in the commerce, entertainment, energy, and smart homes domains when
compared to communication and health domains.
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Fig. 6. New interactions with users can be sampled with ease.

Finally, we investigate whether upfront knowledge is available. In our analysis, we explore both real
data as as well user models being available upfront. One would expect papers to have at least one of these
two prior to starting experiments. User models and not real data were reported in 41 studies, while 53
articles used real data but no user model and 12 use both. We see that for 71 studies neither is available.
In roughly half of these, simulators were used for both training (38/71) and evaluation (37/71). In a
minority, training (15/71) and evaluation (17/71) were performed in a live setting, e.g. while collecting
data.

5.2. Solution

In our investigation into solutions, we first explore the algorithms that were used. Figure 7 shows the
distribution of usage frequency. A vast majority of the algorithms are used only once, some techniques
are used a couple of times and one algorithm is used 60 times. Note again that we use the name of
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Fig. 8. Occurence of different solution architectures (a) and usage of simulators in training (b). For (a), publications that compare
architectures are represented in the ‘multiple’ category.

the algorithms used by the authors as a basis for this analysis. Table 4 lists the algorithms that were
used more than once. A significant number of studies (60/166) use the Q-learning algorithm. At the
same time, a substantial number of articles (18/166) reports the use of RL as the underlying algorithmic
framework without specifying an actual algorithm. The contextual bandits, SARSA, actor-critic and
inverse RL (IRL) algorithms are used in respectively (18/166), (12/166), (8/166), (8/166) and (7/166)
papers. We also observe some additional algorithms from the contextual bandits family, such as UCB
and LinUCB. Furthermore, we find various mentions that indicate the usage of deep neural networks:
deep reinforcement learning, DQN and DDQN. In general, we find that some publications refer to a
specific algorithm whereas others only report generic techniques or families thereof.

Figure 8a lists the number of models used in the included publications. The majority of solutions
relies on a single-model architecture. On the other end of the spectrum lies the architecture of using
one model per person. This architecture comes second in usage frequency. The architecture that uses
one model per group can be considered a middle ground between these former two. In this architecture,
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Table 4
Algorithm usage for all algorithms that were used in more than one publication.

Algorithm # of uses

Q-learning 60
RL, not further specified 18
Contextual bandits
SARSA
Actor-critic

\S}

Inverse reinforcement learning
UCB
Policy iteration
LinUCB
Deep reinforcement learning
Fitted Q-iteration
DQN
Interactive reinforcement learning
TD-learning
DYNA-Q
Policy gradient
CLUB
Monte carlo
Thompson sampling
DDQN

NN NN NN NN WWPER OVGLOVOGVG] © 0

only experiences with relevant individuals can be shared. Comparisons between architectures are rare.
We continue by investigating whether and where traits of the individual were used in relation to these
architectures. Table 5 provides an overview. Out of all papers that use one model, 52.7% did not use
the traits of the individuals and 41.7 % included traits in the state space. 47.5% of the papers include
the traits of the individuals in the state representation while in 37.3% of the papers the traits were not
included. In 15.3% of the cases this was not known.

Figure 8b shows the popularity of using a simulator for training per domain. We see that a substantial
percentage of publications use a simulator and that simulators are used in all domains. Simulators are
used in the majority of publications for the energy, transport, communication and entertainment domains.
In publications in the first three out of these domains, we typically find applications that require large-
scale implementation and have a big impact on infrastructure, e.g. control of the entire energy grid or
a fleet of taxis in a large city. This complicates the collection of useful realistic dataset and training in
a live setting. This is not the case for the entertainment domain with 17 works using a simulator for
training. Further investigation shows that nine out of these 17 also include training on real data or in a
‘live’ setting. It seems that training on a simulator is part of the validation of the algorithm rather than
the prime contribution of the paper in the entertainment domain.

5.3. Evaluation
In investigating evaluation rigor, we first turn to the data on which evaluations are based. Figure 9

shows how many studies include an evaluation in a ‘live’ setting or using existing interactions with
users. In the years up to 2007 few studies were done and most of these included realistic evaluations. In
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Table 5
Number of models and the inclusion of user traits.

Number of models
Traits of users wereused | 1 1/group 1/person multiple

In state representation 38 8 28 2
Other 5 0 9 3
Not used 48 3 22 0
Total 91 11 59 5
Live or real-life evaluation over time Live or real-life evaluation over domains
mmyes, relative mmyes, absolute © all, absolute  mmyes, relative © all, absolute mmyes, absolute
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Fig. 9. Number of papers with a ‘live’ evaluation or evaluation using data on user responses to system behavior.

more recent years, the absolute number of studies shows a marked upward trend to which the relative
number of articles that include a realistic evaluation fails to keep pace. Figure 9 also shows the number of
realistic evaluations per domain. Disregarding the smart home domain, as it contains only four studies,
the highest ratio of real evaluations can be found in the commerce and entertainment domains, followed
by the health domain.

We look at possible reasons for a lack of realistic evaluation using our categorization of settings from
Section 3. Indeed, there are 62 studies with no realistic evaluation versus 104 with a realistic evaluation.
Because these group sizes differ, we include ratios with respect to these totals in Table 6. The biggest
difference between ratios of studies with and without a realistic evaluation is in the upfront availability
of data on interactions with users. This is not surprising, as it is natural to use existing interactions for
evaluation when they are available already. The second biggest difference between the groups is whether
safety is mentioned as a concern. Relatively, studies that refrain from a realistic evaluation mention safety
concerns almost twice as often as studies that do a realistic evaluation. The third biggest difference can
be found in availability of user models. If a model is available, user responses can be simulated more
easily. Privacy concerns are not mentioned frequently, so little can be said on its contribution to a lacking
realistic evaluation. Finally and surprisingly, the ease of sampling interactions is comparable between
studies with a realistic and without realistic evaluation.
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Table 6
Comparison of settings with realistic and other evaluation.

Evaluation
Realistic Other

Data on user responses to system behavior are available 57 (.548) 9 (.145)
Safety is mentioned as a concern in the article 14 (.135) 16 (.258)
Models of user responses to system behavior are available | 21 (.202) 20 (.323)
Privacy is mentioned as a concern in the article 7 (.067) 2(.032)
New interactions with users can be sampled with ease 60 (.577) 37 (.597)
Total | 104 63

compa
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Fig. 10. Number of papers that include any comparison between solutions over time.

Figure 10 describes how many studies include any of the comparisons in scope in this survey, that is:
comparisons between solutions with and without personalization, comparisons between RL approaches
and other approaches to personalization and comparisons between different RL algorithms. In the first
years, no papers includes such a comparison. The period 2000-2010 contains relatively little studies in
general and the absolute and relative numbers of studies with a comparison vary. From 2011 to 2018,
the absolute number maintains it upward trend. The relative number follows this trend but flattens after
2016.

6. Discussion

The goal of this study was to give an overview and categorization of RL applications for personaliza-
tion in different application domains which we addressed using a SLR on settings, solution architectures
and evaluation strategies. The main result is the marked increase in studies that use RL for personaliza-
tion problems over time. Additionally, techniques are increasingly evaluated on real-life data. RL has
proven a suitable paradigm for adaptation of systems to individual preferences using data.

Results further indicate that this development is driven by various techniques, which we list in no
particular order. Firstly, techniques have been developed to estimate the performance of deploying a
particular RL model prior to deployment. This helps in communicating risks and benefits of RL solu-
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tions with stakeholders and moves RL further into the realm of feasible technologies for high-impact
application domains [53]. For single-step decision making problems, contextual bandit algorithms with
theoretical bounds on decision-theoretic regret have become available. For multi-step decision making
problems, methods that can estimate the performance of some policy based on data generated by another
policy have been developed [42, 54, 55]. Secondly, advances in the field of deep learning have wholly
or partly removed the need for feature engineering [56]. This may be especially challenging for sequen-
tial decision-making problems as different features may be of importance in different states encountered
over time. Finally, research on safe exploration in RL has developed means to avoid harmful actions dur-
ing exploratory phases of learning [39]. How any these techniques are best applied depends on setting.
The collected data can be used to find suitable related work for any particular setting [24].

Since the field of RL for personalization is growing in size, we investigated whether methodological
maturity is keeping pace. Results show that the growth in the number of studies with a real-life evalua-
tion is not mirrored by growth of the ratio of studies with such an evaluation. Similarly, results show no
increase in the relative number of studies with a comparison of approaches over time. These may be signs
that the maturity of the field fails to keep pace with its growth. This is worrisome, since the advantages of
RL over other approaches or between RL algorithms cannot be understood properly without such com-
parisons. Such comparisons benefit from standardized tasks. Developing standardized personalization
datasets and simulation environments is an excellent opportunity for future research [57, 58].

We found that algorithms presented in literature are reused infrequently. Although this phenomenon
may be driven by various different underlying dynamics that cannot be untangled using our data, we
propose some possible explanations here without particular order. Firstly, it might be the case that sepa-
rate applications require tailored algorithms to the extend that these can only be used once. This raises
the question on the scientific contribution of such a tailored algorithm and does not fit with the reuse
of some well-established algorithms. Another explanation is that top-ranked venues prefer contributions
that are theoretical or technical in nature, resulting in minor variations to well-known algorithms being
presented as novel. Whether this is the case is out of scope for this research and forms an excellent
avenue for future work. A final explanation for us to propose, is the myriad axes along which any RL
algorithm can be identified, such as whether and where estimation is involved, which estimation tech-
nique is used and how domain knowledge is encoded in the algorithm. This may yield a large number
of unique algorithms, constructed out of a relatively small set of core ideas in RL. An overview of these
core ideas would be useful in understanding how individual algorithms relate to each other.

On top of algorithm reuse, we analyzed which RL algorithms were used most frequently. Generic and
well-established (families of) algorithms such as Q-learning are the most popular. A notable entry in the
top six most-used techniques is inverse reinforcement learning (IRL). Its frequent usage is surprising, as
the only viable application area of IRL under a decade ago was robotics [20]. Personalization may be one
of the other useful application areas of this branch of RL and many existing personalization challenges
may still benefit from an IRL approach. Finally, we investigated how many RL models were included
in the proposed solutions and found that the majority of studies resorts to using either one RL. model in
total or one RL model per user. Inspired by common practice of clustering in the related fields such as
e.g. recommender systems, we believe that there exists opportunities in pooling data of similar users and
training RL models on the pooled data.

Besides these findings, we contribute a categorization of personalization settings in RL. This frame-
work can be used to find related work based on the setting of a problem at hand. In designing such a
framework, one has to balance specificity and usefulness of aspects in the framework. We take the aspect
of ‘safety’ as an example: any application of RL will imply safety concerns at some level, but they are
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more prominent in some application areas. The framework intentionally includes a single ambiguous
aspect to describe a broad range ‘safety sensitivity levels’ in order for it to suit its purpose of navigating
literature. A possibility for future work is to extend the framework with other, more formal, aspects of
problem setting such as those identified in [59].
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Appendix A. Queries

Listing 1: Query for Scopus Database

TITLE—-ABS—KEY (

("reinforcement learning" OR "contextual bandit") AND

("personalization" OR "personalized" OR "personal" O
personalisation” OR "personalised" OR

"customization" OR "customized" OR "customised" OR "customised" OR

"individualized" OR "individualised" OR "tailored"))

"

Listing 2: Query for IEEE Xplore Database Command Search

(((reinforcement learning) OR contextual bandit) AND

(personalization OR personalized OR personal OR personalisation OR
personalised OR

customization OR customized OR customised OR customised OR

individualized OR individualised OR tailored))

Listing 3: Query for ACM DL Database

("reinforcement learning" OR "contextual bandit") AND

(personalization OR personalized OR personal OR personalisation OR
personalised OR

customization OR customized OR customised OR customised OR

individualized OR individualised OR tailored)

Listing 4: First Query for DBLP Database

reinforcement learning

(personalization | personalized | personal | personalisation|personalised |

customization | customized | customised | customised |
individualized | individualised | tailored)

Listing 5: Second Query for DBLP Database

contextual bandit

(personalization | personalized | personal | personalisation | personalised |

customization | customized | customised | customised |
individualized |individualised | tailored)
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Listing 6: First Query for Google Scholar Database

19

allintitle: "reinforcement learning"

personalization OR personalized OR personal OR personalisation OR
personalised OR

customization OR customized OR customised OR customised OR

individualized OR individualised OR tailored

Listing 7: Second Query for Google Scholar Database

allintitle: "contextual bandit"

personalization OR personalized OR personal OR personalisation OR
personalised OR

customization OR customized OR customised OR customised OR

individualized OR individualised OR tailored
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Appendix B. Tabular view of data 1
2
3
4
Table 7: Table containing all included publications. The first column refers to the data items in Table 2.
# Value Publications ;
I n [13, 18, 19, 53, 60-182] 8
y [183-221] 0
10
2 n [62, 64, 69, 73, 78-80, 85, 87, 116, 119, 121, 131, 132, 137, 139, 170, 183, 184, 187, 188, |,
192, 194, 195, 198-200, 202, 203, 210, 214-218, 220] 15
y [13, 18, 19, 53, 60, 61, 63, 65-68, 70-72, 74-77, 81-84, 86, 88-115, 117, 118, 120, 122~
130, 133-136, 138, 140-169, 171-182, 185, 186, 189-191, 193, 196, 197, 201, 204-209, _,
211-213, 219, 221] .
3n [13, 18, 19, 60-67, 70-75, 77-80, 83, 86-90, 92-94, 96-101, 103, 105-107, 109, 111-1¢6
115, 117-121, 123-126, 128-131, 133, 135-140, 142-158, 160-172, 174-192, 194, 195, 17
197-200, 202-206, 208-210, 215-221] 18
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