
Data Science 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

HOBBIT: A Platform for Benchmarking Big
Linked Data

Michael Röder a,b,∗,Denis Kuchelev a,b and Axel-Cyrille Ngonga Ngomo a,b

a Data Science Department, University of Paderborn,Germany
E-mails: michael.roeder@upb.de, axel.ngonga@upb.de
b Institute for Applied Informatics, Germany

Abstract. An increasing number of solutions aim to support the steady increase of the number of requirements and requests
for Linked Data at scale. This plethora of solutions leads to a growing need for objective means that facilitate the selection
of adequate solutions for particular use cases. We hence present HOBBIT, a distributed benchmarking platform designed for
the unified execution of benchmarks for Linked Data solutions. The HOBBIT benchmarking platform is based on the FAIR
principles and is the first benchmarking platform able to scale up to benchmarking real-world scenarios for Big Linked Data
solutions. Our online instance of the platform has more than 300 registered users and more than 13000 experiments were
executed. It has also been used in eleven benchmarking challenges. We give an overview of the results achieved during 2 of
these challenges and point to some of the novel insights that were gained from the results of the platform. HOBBIT is open-
source and available at http://github.com/hobbit-project.

Keywords: Benchmarking, Big Linked Data

1. Introduction

While the adoption of Linked Data (LD) is increasing steadily, the selection of the right frameworks
for a given application driven by this paradigm remains elusive. This is partly due to the lack of (1)
large-scale benchmarks for most steps of the LD life cycle [1] and (2) scalable benchmarking platforms
able to generate uniform comparable evaluation results for the technologies which deal with this type
of data [2]. The usefulness of benchmarks for characterising the performance of families of solutions
has been clearly demonstrated by the varied benchmarks made available over recent decades [2–5]. For
example, the TPC family of benchmarks is widely regarded as having provided the foundation for the
development of efficient relational databases [3]. Modern examples of benchmarks that have achieved
similar effects include the QALD [4] and BioASQ [5] benchmarks, which have successfully contributed
to enhancing the performance of question answering systems over LD and in the bio-medical domain re-
spectively. Modern benchmarking platforms have also contributed to the comparability of measurements
used to evaluate the performance of systems. For example, benchmarking platforms such as BAT [6],
GERBIL [2] and IGUANA [7] provide implementations and corresponding theoretical frameworks to
benchmark different aspects of the LD life cycle in a consistent manner. Still, none of these benchmark-
ing platforms can scale up to the requirements of modern applications.

*Corresponding author.

2451-8484 c© 0 – IOS Press and the authors. All rights reserved

mailto:michael.roeder@upb.de
mailto:axel.ngonga@upb.de
http://github.com/hobbit-project


2 M. Röder et al. / HOBBIT

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

The main contribution of this paper is the HOBBIT (Holistic Benchmarking of Big Linked Data)
platform. HOBBIT was designed to accommodate the benchmarking of Big LD applications, i.e., appli-
cations driven by LD that exhibit Big Data requirements as to the volume, velocity and variety of data
they process [8]. The platform was designed with extensibility in mind. Thus, its architecture is modular
and allows the benchmarking of any step of the LD life cycle.1 The comparability of results was the sec-
ond main design pillar. Consequently, HOBBIT abides by the FAIR principles [9]. The practical usability
of the platform was ensured by its use in 11 challenges between 2016 and 2019 (e.g., [10–19]. HOBBIT
is open-source and can be installed deployed locally, on a local cluster and on computing services such
as Amazon Web Services (AWS). Additionally, we offer an online instance of the platform deployed on
a cluster and available for experimentation.2 In this paper, we focus on the architecture of the platform
and summarise the results of the evaluation campaigns carried out with the platform.

The rest of this paper is structured as follows: We begin by giving an overview of the state of the
art in benchmarking LD. Thereafter, we present requirements to the benchmarking platform that were
gathered from 68 experts in an open survey. We used these requirements to derive the architecture for
the platform. We demonstrate the use of the platform by showing how it can be applied to benchmark a
knowledge extraction framework along the axes of accuracy and scalability—a dimension that was not
considered in previous benchmarking efforts. Finally, further experimental results gathered through the
platform are summarised.

2. Related Work

The work presented herein is mostly related to benchmarking platforms for Linked Data/RDF-based
systems. Several benchmarks have been developed in the area of linking RDF datasets [20]. A recent
detailed comparison of instance matching benchmarks can be found in [21]. The authors show that there
are several benchmarks using either real or synthetically generated datasets. SEALS 3 is the best-known
platform for benchmarking link discovery frameworks. It offers the flexible addition of datasets and
measures for benchmarking link discovery. However, the platform was not designed to scale and can
thus not deal with datasets which demand distributed processing.

For a large proportion of existing benchmarks and benchmark generators (e.g., LUBM [22],
BSBM [23], DBSBM [24] and FEASIBLE [25]), the focus has commonly been on creating frame-
works able to generate data and query loads [22–25] able to stress triple stores. IGUANA [7] is the first
benchmarking framework for the unified execution of these data and query loads. However, like the plat-
forms aforementioned, IGUANA does not scale up to distributed processing and can thus not be used to
benchmark distributed solutions at scale.

Knowledge Extraction—especially Named Entity Recognition and Linking—has also seen the rise
of a large number of benchmarks [2]. Several conferences and workshops aiming at the comparison of
information extraction systems (including the Message Understanding Conference [26] and the Confer-
ence on Computational Natural Language Learning [27]) have created benchmarks for this task. In 2014,
Carmel et al. [28] introduced one of the first Web-based evaluation systems for Named Entity Recogni-
tion and Linking. The BAT benchmarking framework [6] was also designed to facilitate benchmarking
based on these datasets by combining seven Wikipedia-based systems and five datasets. The GERBIL

1Code and dataset generators available at http://github.com/hobbit-project. Project homepage at https://project-hobbit.eu/.
2http://master.project-hobbit.eu
3http://www.seals-project.eu/

http://github.com/hobbit-project
https://project-hobbit.eu/
http://master.project-hobbit.eu
http://www.seals-project.eu/


M. Röder et al. / HOBBIT 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

framework [2] extended this idea by being knowledge-base-agnostic and addressing the NIL error prob-
lem in the formal model behind the BAT framework.While these systems all allow for benchmarking
knowledge extraction solutions, they do not scale up to the requirements of distributed systems.

In the area of Question Answering using Linked Data, challenges such as BioASQ [5], and the Ques-
tion Answering over Linked Data (QALD) [29] have aimed to provide benchmarks for retrieving answers
to human-generated questions. The GERBIL-QA platform [30] is the first open benchmarking platform
for question answering which abides by the FAIR principles. However, like its knowledge extraction
companion, it is not designed to scale up to large data and task loads.

A few frameworks have aimed to tackle benchmarking in a generic fashion. For example, the Peel
framework4 supports the automation of experiments on Big Data infrastructure. However, the framework
only supports systems that can be executed on one of the supported Big Data solutions like Flink or
Spark.5 Moreover, it does not support a large portion of the specific requirements for benchmarking
Big LD described in Section 3. A major drawback is that the results generated by the platform are
not transparent as the execution of systems and benchmarks is hidden from the users. This makes a
comparison of the resources used by benchmarked systems impossible. Similar observations hold for
Plug and Play Bench [31], which was designed to evaluate different hardware settings. Also relevant
according to the literature are novel Big Data benchmarks for benchmarking relational databases (e.g.,
BigBench [32] and [33]). However, these benchmarks are limited to one step of the data life cycle and
are not benchmarking platforms.

Table 1
Comparison of benchmarking frameworks

Y
ea

r

E
xt

ra
ct

io
n

St
or

ag
e

M
an

ua
l R

ev
is

io
n

L
in

ki
ng

E
nr

ic
hm

en
t

Q
ua

lit
y

A
na

ly
si

s

E
vo

lu
tio

n

E
xp

lo
ra

tio
n

Sc
al

ab
le

D
at

a

Sc
al

ab
le

Ta
sk

s

Fa
ir

B
en

ch
m

ar
ki

ng

BAT 2013 3 —
GERBIL 2014 3 — 3

IGUANA 2017 3 — 3

OLTP Bench 2013 — 3 3

HOBBIT 2017 3 3 — 3 3 (3) 3 3 3 3 3

The HOBBIT platform is the first benchmarking framework which supports all steps of the LD life
cycle which can be benchmarked automatically (see Table 1).6 In addition, it is the first benchmarking
platform for Linked Data which scales up to the requirements of Big Data platforms through horizontal
scaling. The comparability of HOBBIT’s benchmarking results are ensured by the cluster underlying the
open instantiation of the platform.7

4http://peel-framework.org
5The complete list can be found at https://github.com/peelframework/peel#supported-systems.
6We are not aware of the existence of an automatic benchmark for the quality analysis step. However, the platform itself

would support such a benchmark.
7See http://master.project-hobbit.eu.

http://peel-framework.org
https://github.com/peelframework/peel#supported-systems
http://master.project-hobbit.eu


4 M. Röder et al. / HOBBIT

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

3. Requirements

We adopted a user-driven approach to develop our platform. The core requirements were mainly de-
rived from the survey in [34], which had 68 expert participants. To distinguish them from the FAIR
principles, we will abbreviate these user requirements with Ux.

3.1. Functional requirements

U1 The main functionality of the platform is the execution of benchmarks.
U2 Benchmark results should be presented in human- and machine-readable form.
U3 It should be possible to add new benchmarks and new systems.
U4 The platform should offer repeatable experiments and analysis of results.
U5 The key performance indicators (KPIs) should include the effectiveness, e.g., the accuracy, and

the efficiency, e.g., runtime of systems.
U6 The platform should be able to measure the scalability of solutions, i.e., the scalable generation

of data the evaluation is based on as well as tasks a system must execute.
U7 The platform should support the benchmarking of distributed systems.
U8 It should support the execution of challenges.

These functional requirements predefined the corner stones for the platforms architecture. In Section 4,
it will be shown how the platform fulfils each of them.

3.2. Qualitative requirements

U9 The benchmarks should be easy to use and interfaces provided should be as simple as possible.
U10 The platform should support different programming languages.
U11 The results should be archived safely for later reference.
U12 The platform needs to be robust regarding faulty benchmarks or systems.

We derived the degree of modularity and the error handling of the platform from these requirements
(U1, U3–U12). The result analysis component and interfaces were designed to accommodate U2 and
U9–U12. Details are provided in Section 4.

3.3. FAIR principles

From the beginning on, the platform was build to support the FAIR principles [9].8

F1 (Meta)data are assigned a globally unique and persistent identifier.
F2 Data are described with rich metadata (defined by R1 below).
F3 Metadata clearly and explicitly include the identifier of the data they. describe
F4 (Meta)data are registered or indexed in a searchable resource.
A1 (Meta)data are retrievable by their identifier using a standardised communications protocol.

A1.1 The protocol is open, free, and universally implementable.
A1.2 The protocol allows for an authentication and authorisation procedure, where necessary.

A2 Metadata are accessible, even when the data are no longer available.

8https://www.go-fair.org/fair-principles/

https://www.go-fair.org/fair-principles/


M. Röder et al. / HOBBIT 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

I1 (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge rep-
resentation.

I2 (Meta)data use vocabularies that follow FAIR principles.
I3 (Meta)data include qualified references to other (meta)data.
R1 Meta(data) are richly described with a plurality of accurate and relevant attributes.

R1.1 (Meta)data are released with a clear and accessible data usage license.
R1.2 (Meta)data are associated with detailed provenance.
R1.3 (Meta)data meet domain-relevant community standards.

The FAIR principles are focusing on data management. Thus, not all of them can be solely realised
by the implementation of the platform. There are principles—e.g., R1.1—which are at least partly in the
responsibility of the organisation hosting the platform. However, the following section shows the design
of the HOBBIT platform and how it supports the FAIR principles.

4. Platform Architecture

4.1. Overview

Platform
Controller

Data 
Generator

Task 
Generator

Data 
Generator

Data 
Generator

Task 
Generator

Task 
Generator

Graphical 
User Interface

Benchmarked System

data flow
creates component

Storage
Analysis

Benchmark
Controller

Evaluation 
Module

Eval. Storage

User 
ManagementRepository

Resource 
Monitoring Logging

Fig. 1. Architecture of the HOBBIT platform

Figure 1 gives an overview of the architecture of the HOBBIT platform. The platform is based on
a container architecture, i.e., the components are implemented as independent containers. This eases
the adding of new benchmarks and systems (U3) which can be implemented using different languages
(U10). Additionally, it eases the development and maintenance of the platform itself and adds a sep-
aration between the platform, benchmark and system containers, thus limiting the influence of faulty
program code to its container instead of decreasing the stability of the whole platform (U11, U12).
Using containers for benchmark and system components also gives the possibility of scaling both by of-
fering the deployment of additional containers across multiple machines (U6, U7). The communication



6 M. Röder et al. / HOBBIT

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

between these components is ensured by means of a message bus. Choosing this established commu-
nication method eases the implementation of benchmarks and systems based on different programming
languages (U9, U10).

4.2. Platform Components

The platform has several components (see blue elements in Figure 1). They offer the main functionality
of the platform.

4.2.1. Platform Controller
The platform controller is the central component of the HOBBIT platform. Its main role is to coordinate

the interaction of other components as needed. This mainly includes handling requests that come from
the user interface component, starting and stopping of experiments, observing the health of the cluster
and triggering the analysis component. In addition, the controller manages a priority queue that contains
user-configured experiments that are to be executed in the future. The execution order of experiment
configurations is determined using (1) the time at which they have been configured by the user (following
the first-in-first-out principle) and (2) the priority of experiments, which is derived from whether the
said experiment is part of a scheduled challenge (higher priority) or not (U8). The internal status of the
platform controller is stored in a database. This enables restarting the controller without losing its current
status, e.g., the content of the experiment queue.

The platform controller uses features of Docker Swarm to observe the status of the cluster that is used
to execute the experiments.E.g., if one of the nodes drops out of the cluster, the comparability between
single experiments might not be given (U4). Thus, the platform controller needs to be aware of the
number of working nodes that are available for the experiment. If there is no running experiment and the
queue is not empty, the platform controller initiates the execution of an experiment and observes its state.
If the experiment takes more time than a configured maximum, the platform controller terminates the
benchmark components and the system that belongs to the experiment. By these means, it also ensures
that faulty benchmarks or systems cannot block the platform (U12).

4.2.2. Storage
The storage component contains the experiment results and configured challenges. It comprises two

containers—a triple store that uses the HOBBIT ontology to describe results and a handler for the
communication between the message bus and the triple store. The storage component offers a public
SPARQL endpoint with read-only access which can be queried via HTTP/HTTPS (U2, F4, A1).9 The
write access is limited to the platform controller, the user interface and the analysis component. The
controller stores experiment results and manages running challenges. The user interface presents the
available data to the user and enables the configuration of new challenges as well as the registration of
systems for taking part in a challenge (U8). The analysis component requests experiment results from
the storage and stores results of the analysis.

4.2.3. Ontology
The experiment results, the metadata of experiments and challenges as well as the results of the analy-

sis component are stored as RDF triples [35] (I1). Where possible, we used established RDF vocabularies

9Our endpoint can be found at https://db.project-hobbit.eu/sparql.

https://db.project-hobbit.eu/sparql


M. Röder et al. / HOBBIT 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(I2, R1.3).10 However, for describing the experiments and challenges in detail we created the HOBBIT
ontology.11

The ontology offers classes and properties to define the metadata for the single benchmarks and bench-
marked systems. For each benchmark or system a user would like to use within the platform, a metadata
file has to be provided containing some general information. This includes the definition of a URI for
each benchmark and system (F1), a name, a description and a URI of the API offered by the benchmark
and implemented a system. Based on the API URI the platform can map the available systems to the
benchmarks to make sure that the system is applicable for a given benchmark.

Additionally, a benchmarks metadata include parameters and KPIs. The parameter can be defined to
be configurable through the user interface when starting an experiment and whether the parameter should
be used as feature in the analysis component.

A systems metadata offers the definition of several system instances with different parameterisations.
The analysis method can make use of the different parameter values of the instances to measure the
impact of the parameters on the KPIs.

Experiments are described with triples regarding (1) provenance, (2) the experiment results, (3) the
benchmark configuration and (4) benchmark as well as (5) system metadata (F2, F3, I3, R1, R1.2).
The provenance information covers the start and end time of the experiment as well as details about
the hardware on which the experiment has been executed. The experiment results are generated by the
implementation of the benchmark and typically contain results for the single KPIs which are defined in
the benchmarks metadata. Together with the metadata of the benchmark and system, the description of
the KPIs and their description are used by the analysis component (U4). The platform controller assigns
a URI to the experiment (F1) and copies the configuration of the benchmark as well as the metadata of
the benchmark and system into the experiments metadata. Note that this makes sure that even if a user
removes a benchmark or system from the platform after executing an experiment their metadata is still
available (A2).

Challenges which are carried out on the platform are modelled by separating them into single tasks.
Each task has a benchmark with a certain parameterisation and users can register their systems for the
single tasks to take part in the challenge. A challenge and its tasks have a generated URI (F1) and
come with a label as well as a description. Additionally, the creator of the challenge can define the
execution date and the publication date of the challenge as well as a link to a web page giving further
information about the challenge. The first date defines the point in time at which the execution of the
single experiments of the challenge should start while the latter defines the day at which the results
should be made public. The experiments that are part of a challenge, point to the challenge task for
which they have been executed (I3).

Essentially, the ontology offers classes and properties to store the configuration and the results of an
experiment. URIs are assigned to benchmarks, benchmarked software systems, and KPIs. Moreover,
benchmark configurations as well as benchmark and system features, e.g., a certain parameterization,
can be described. In addition to experiments, the ontology allows for the description of challenges, tasks
in challenges and benchmarks associated with these tasks.

4.2.4. Analysis
This component is triggered after an experiment has been carried out successfully. Its task is to en-

hance the benchmark results by combining them with the features of the benchmarked system(s) and

10Namely, RDF [36], PROV-O [37], Data Cube [38] and XSD [39].
11The formal specification of the ontology can be found at https://github.com/hobbit-project/ontology.

https://github.com/hobbit-project/ontology


8 M. Röder et al. / HOBBIT

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

the data or task generators. This combination can lead to additional insights, e.g., strengths and weak-
nesses of a certain system (U4). While the component uses the results of benchmarks, it is modelled
independently from any benchmark implementation.

4.2.5. Graphical User Interface

Fig. 2. An example of a plot generated for a KPI. It shows the F1-measure the Jena Fuseki triple store achieved for 71 consec-
utive select queries during a run of the Odin benchmark [11].

The graphical user interface component handles the interaction with the user via HTTP/HTTPS (A1).
It retrieves information from the user management that allows different roles enabling the user interface
to offer functionality for authenticated users as well as a guest role for unauthenticated users. For exam-
ple, a guest is only allowed to read the results of experiments and analysis (U2). Since the number of
experiments is steadily increasing, the user interface offers a filter and sorting mechanism to increase the
findability (F4). Experiments are currently visualized as table containing their metadata, the parameter
values and the KPI values. This table view can also be used to compare several experiments with each
other. Additionally, plots as shown in Figure 2 are generated where applicable.12

Authenticated users have additional rights ranging from starting experiments to organising challenges,
i.e., define experiments with a certain date at which they will be executed (U1, U8).

Additionally, experiments and challenges have dereferencable URIs assigned, i.e., a user can copy
the URI of an experiment or a challenge into the browsers URL bar and the server shows the details of
this resource (F1, A1). For our online instance, we offer w3id URIs to enable static URLs that can be
redirected.13

For each benchmark, a report can be generated. This comprises (1) a brief overview over the results
of the last experiments carried out with the benchmark, (2) scatter plots that compare values of features

12The example is part of the experiment https://w3id.org/hobbit/experiments#1540829047982.
13See https://w3id.org/.

https://w3id.org/hobbit/experiments#1540829047982
https://w3id.org/


M. Röder et al. / HOBBIT 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fig. 3. An example of a diagram showing the Pearson correlations between the different parameters of the Odin benchmark [11]
and the micro F1-measure achieved by the two triples stores Virtuoso and Jena Fuseki.

and KPIs as well as (3) plots showing the correlation between benchmark features and the performance
achieved by the single systems. Such a plot is shown in Figure 3.

If the license of the data has been configured in the triple store, the information is shown in the user
interface (R1,1). The data of our online instance is licensed under the Creative Commons Attribution
4.0 International Public License14.

4.2.6. Message Bus
This component contains the message bus system. Three different communication patterns are used.

Firstly, labelled data queues simply forward data, e.g., the data generated by the mimicking algorithm
is transferred from several data generators to several task generators. The second pattern works like
remote procedure calls. The queue has one single receiving consumer that executes a command, e.g., a
SPARQL query, and sends a response containing the result. Thirdly, a central broadcasting queue is used
(hobbit.command). Every component connected to this queue receives all messages sent by one of
the other connected components. This queue is used to connect the loosely coupled components and
orchestrate their activities.

4.2.7. User Management
The user management relies on Keycloak.15 It allows the upload of private systems which can not be

seen by other users. Additionally, the platform makes use of different user roles to enable single users to

14License: https://creativecommons.org/licenses/by/4.0/legalcode. The license statement of our online instance can be found
at https://master.project-hobbit.eu/home

15https://www.keycloak.org/

https://creativecommons.org/licenses/by/4.0/legalcode
https://master.project-hobbit.eu/home
https://www.keycloak.org/


10 M. Röder et al. / HOBBIT

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

create challenges. Note that the user management offers a guest role that enables unregistered users to
see the publicly available experiment results.

4.2.8. Repository
The repository contains all available benchmarks and systems. For our online instance, the repository

is a Gitlab16 instance which can be used by registered users to upload Docker images and define the
metadata of their benchmarks and systems (U3, R1.3). Note that the user can define the visibility of his
system, i.e., the platform supports publicly accessible systems and benchmarks that can be used by every
other registered user as well as private systems. However, the experiment results (including the systems
metadata) will always be made public.

4.2.9. Resource Monitoring
The resource monitoring component uses Prometheus17 to collect information about the hardware

resources used by the benchmarked system. The benchmark can request this information to include it
into its evaluation. At the moment, the CPU time, the disk space and the amount of RAM used by the
system can be monitored. Based on the architecture of Prometheus, this list of metrics can be further
extended.

4.2.10. Logging
The logging comprises three components—Logstash18, Elasticsearch19 and Kibana.20 While Logstash

collects the log messages from the single components, Elasticsearch is used to store them inside a fulltext
index. Kibana offers the user interface for accessing this index. The logs are kept private. However,
owners of systems or benchmarks can download the logs of their components from the user interface.

4.3. Benchmark Components

These components are part of given benchmarks and have been colored orange in Figure 1. Hence,
they are instantiated for a particular experiment and are destroyed when the experiment ends. A bench-
mark execution has three phases—an initialisation phase, a benchmarking phase and an evaluation phase.
The phases are described in more detail in section 4.5. It should be noted that the components described
in this section represent our suggestion for the structure of a benchmark. However, the HOBBIT plat-
form supports a wide range of possible benchmark structures as long as a benchmark implements the
necessary API to communicate with the platform controller.

4.3.1. Benchmark Controller
The benchmark controller is the central component of a benchmark. It communicates with the plat-

form controller and it creates and controls the data generators, task generators, evaluation-storage and
evaluation-module.

4.3.2. Data generator
Data generators encapsulate algorithms able to generate the data needed for given benchmarks. Im-

portantly, data generators can be run in a distributed fashion to ensure that the platform can create
the necessary data volumes or data velocity. Typically, data generators are created by the benchmark

16https://about.gitlab.com/
17https://prometheus.io/
18https://www.elastic.co/de/products/logstash
19https://www.elastic.co/de/products/elasticsearch
20https://www.elastic.co/de/products/kibana

https://about.gitlab.com/
https://prometheus.io/
https://www.elastic.co/de/products/logstash
https://www.elastic.co/de/products/elasticsearch
https://www.elastic.co/de/products/kibana


M. Röder et al. / HOBBIT 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

controller and configured using benchmark-specific parameters. They generate data based on the given
parameters and send said data to the task generators as well as to the system adapter and terminate when
the required data has been created.

4.3.3. Task generator
Task generators get data from data generators, generate tasks that can be identified with an ID and

send these IDs to the system adapter. Each task represents a single problem that has to be solved by the
benchmarked system (e.g., a SPARQL query). The expected response for the generated task is sent to
the evaluation storage. Like data generators, task generators can be scaled to run in a distributed fashion.

4.3.4. Evaluation storage
This component stores the gold standard results as well as the responses of the benchmarked system

during the benchmarking phase. During the evaluation phase it sends this data to the evaluation module.
Internally, the output of a benchmark is stored as a set of key-value pairs. Task IDs are used as key. Each
value comprises (1) the expected result, (2) the result calculated by the benchmarked system as well as
(3) the timestamp at which the task was sent to the system by a task generator and (4) the timestamp at
which the response was received by the evaluation storage.

4.3.5. Evaluation Module
The evaluation module is created by the benchmark controller at the beginning of the evaluation phase

and requests results from the evaluation storage. It evaluates them by computation the KPIs associated
with the benchmark, summarizes the evaluation results and sends them to the benchmark controller
before it terminates.

4.4. Benchmarked System Components

Each system to be benchmarked using the HOBBIT platform has to implement the API of the bench-
mark to be used and the API of the platform. Since systems are typically not developed for the mere sake
of being benchmarked with our platform, each system is usually connected to the platform by means of
a system adapter container. The system adapter serves as a proxy translating messages from the HOBBIT

platform to the system to be benchmarked and vice versa. The system adapter of each of the systems to
benchmark is instantiated by the platform controller when an experiment is started. Adapters can create
additional containers that might contain components of the benchmarked system. Thereafter, they send
a ready signal to the platform controller to indicate that they are ready to be benchmarked. They receive
incoming data and tasks, forward them to the system and send its responses to the evaluation storage.
Adapters stop the benchmark system and terminate after they receive a command indicating that all tasks
have been completed.

4.5. Benchmark Workflow

Since the platform was designed for executing benchmarks (U1), we defined a typical workflow of
benchmarking a Big LD system. The workflow is abstracted to make sure that it can be used for bench-
marking all steps of the LD life cycle steps. Figure 4 shows a sequence diagram containing the steps
as well as the type of communication that is used. Note that the orchestration of the single benchmark
components is part of the benchmark and can be different across different benchmark implementations.



12 M. Röder et al. / HOBBIT

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Platform 
Controller

Data 
Generator

Task 
Generator

Benchmarked
System

Benchmark 
Controller

RabbitMQ

Evaluation 
ModuleEval. Storage

Create Create

Create Create Create

Start Start

DataData

Tasks Expected 
Responses
Responses

Terminated

B
en

ch
m

ar
ki

ng
ph

as
e

Terminate

Terminated

Terminate

Create

Response

Terminated

Terminated

Results

Terminated

Storage

Results

Terminated

Results

Start

Ready Ready ReadyReady

Ready

Pairs

 
Docker

Terminate

In
iti

al
iz

at
io

n
ph

as
e

E
va

lu
at

io
n

ph
as

e

Fig. 4. Simplified overview of the general benchmarking workflow. The system as well as the user interface are left out and the
benchmark controller creates other containers directly, without sending requests to the platform controller.

4.5.1. Initialisation Phase
At the beginning of the benchmarking process, the platform controller makes sure that a benchmark

can be started. This includes a check to make sure that all hardware nodes of the cluster are available.
The platform controller then instantiates the system adapter. The said adapter first initializes, then starts
the system to be benchmarked and makes sure that it is working properly. Finally, the adapter sends a
message to the platform controller to indicate that it is ready. Once the system adapter has been started,
the platform controller generates the benchmark controller. The task of the benchmark controller is to
ensure that the data and tasks for a given benchmark are generated and dispatched according to a given
specification. To achieve this goal, the controller instantiates the data and task generators as well as the
evaluation storage. It then sends a message to the platform controller to indicate that it is ready.

4.5.2. Benchmarking Phase
The platform controller waits until both the system adapter and the benchmark controller are ready

before starting the benchmarking phase by sending a start signal to the benchmark controller which
starts the data generators. The data generators start the data generation algorithms to create the data that
will underlie the benchmark. The data is sent to the system adapter and to the task generators. The task
generators generate the tasks and send them to the system adapter, which triggers the required processing



M. Röder et al. / HOBBIT 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

of the data in the system. The system response is forwarded to the evaluation storage by the system
adapter. The task generators store the corresponding expected result in the evaluation storage. After the
data and task generators finish their work, the benchmarking phase ends and both the generators and the
system adapter terminate.

4.5.3. Evaluation Phase
During the evaluation phase, the benchmark controller creates the evaluation module. The evaluation

module loads the results from the evaluation storage. This is done by requesting the results pairs, i.e.,
the expected result and the result received from the system for a single task, from the storage. The
evaluation module uses these pairs to evaluate the system’s performance and to calculate the KPIs. The
results of this evaluation are returned to the benchmark controller before the evaluation module and
storage terminate. The benchmark controller adds information for repeating the experiment, e.g., its
parameters, to the evaluation results, sends them to the platform controller and terminates. Note that
this makes sure that all the data is still available, although the benchmark or the benchmarked system
are deleted from the servers (A2). After the benchmark controller has finished its work, the platform
controller can add additional information to the result, e.g., the configuration of the hardware, and store
the result. Following this, a new evaluation can be started. The platform controller sends the URI of the
new experiment result to the analysis component. The analysis component reads the evaluation results
from the storage, processes them and stores additional information in the storage.

Importantly, the platform allows for other orchestration schemes. For example, it is possible to gener-
ate all the data in a first step before the task generators start to generate their tasks based on the complete
data. In another variation, the task generators can also be enabled to generate a task, wait for the response
of the system and then send the subsequent task.

5. Evaluation

The HOBBIT platform has already been used successfully in a large number of challenges (see Section
6). Still, we evaluated our architecture in two different respects. First, we simulated benchmarking triple
stores using HOBBIT. These experiments had two goals. First, we wanted to prove that the HOBBIT

platform can be used on single, lightweight hardware (e.g., for development purposes or for benchmarks
where the scalability and runtime are not of importance) as well as in a distributed environment. Second,
we wanted to evaluate the throughput of storage benchmarks. In addition, we benchmarked several
knowledge extraction tools and studied the runtime performance of these systems for the first time.

5.1. Triple store benchmark

To configure our simulation, we derived message characteristics from real data using the Linked
SPARQL Queries Dataset [40]–a collection of SPARQL query logs. This collection of real query logs
suggests that (1) the average length of a SPARQL query has a length of 545.45 characters and (2) the
average result set comprises 122.45 bindings. We assumed that the average size of a single result is
100 characters leading to a result set size of approximately 12,200 characters which is created for every
request by our triple store simulation.



14 M. Röder et al. / HOBBIT

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 2
Platform benchmark results on a single machine (1 – 3) and a cluster (4, 5).

Experiments Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Data generators 2 2 2 1 3
Task generators 1 1 1 1 1
Queries 1,000 2,000 5,000 100,000 300,000

Avg. query runtime (in ms) 7,058 17,309 33,561 38,810 59,828
Query runtime std. dev. 686 4,493 3,636 22,517 24,540
Overall runtime (in s) 11.2 32.4 51.5 2,086 2,536
Queries per second (avg.) 44.9 31.0 48.6 865.1 774.2

The platform was deployed on a small machine21 and on a server cluster.22 The single benchmark runs
are shown in Table 2. We executed the benchmark with three different numbers of queries on the smaller
machine and two larger numbers of queries on the cluster. Our results show that the platform can run
even on the minimalistic single machine chosen for our evaluation. Hence, the HOBBIT platform can
be used locally for smoke tests and development tests. In addition, our results also clearly indicate the
need for a platform such as HOBBIT by pointing to the necessity to deploy benchmarking platforms in a
large-scale environment to test some of the Big LD systems. Experiments with 5000 queries run on the
small machine clearly show an increase in the average runtime per query and the standard deviation of
the query runtimes due to a traffic jam in the message bus queues. In contrast, our results on the cluster
show that we are able to scale up easily and run 20 times more queries per second that on the single
machine.

5.2. Knowledge Extraction benchmark use case

For our second evaluation, we used Task 1B of the Open Knowledge Extraction challenge 2017 [12]
as use case. This task comprises the problem of spotting named entities from a given text and linking
them to a given knowledge base. All experiments were run on our cluster. We benchmarked the fol-
lowing named entity recognition tools: (1) FOX [41], (2) the Ottawa Baseline Information Extraction
(Balie) [42], (3) the Illinois Named Entity Tagger (Illinois) [43], (5) the Apache OpenNLP Name Finder
(OpenNLP) [44], (5) the Stanford Named Entity Recognizer (Stanford) [45], and (6) DBpedia Spot-
light (Spotlight) [46]. The entities that were found in the text by any of the tools are linked to a given
knowledge base using AGDISTIS [47]. In our experiment, we used DBpedia 201523 as the reference
knowledge base.

The aim of the benchmark was to measure the scalability and the accuracy of these systems under
increasing load, an experiment which was not possible with existing benchmarking solutions. We used
a gold standard made up of 10,000 documents generated using the BENGAL generator24 included in
the HOBBIT platform. The evaluation module was based on the evaluation used in [12] and measured

21Dual Intel Core i5 , 2.5 GHz, 2 GB RAM
221 master server (1xE5-2630v4 10-cores, 2.2GHz, 128GB RAM) hosting platform components (including RabbitMQ mes-

sage broker), 1 data server (1xE5-2630v3 8-cores, 2.4GHz, 64GB RAM) hosting storages, 6 nodes (2xE5-2630v3 8-cores,
2.4GHz, 256GB RAM) divided into two groups hosting either components of the benchmark or the benchmarked system.

23http://dbpedia.org
24http://github.com/dice-group/bengal

http://dbpedia.org
http://github.com/dice-group/bengal


M. Röder et al. / HOBBIT 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Fig. 5. Average runtime per document achieved by sys-
tems during the different phases.

Table 3 The effectiveness of the systems (Micro measures).

System Precision Recall F1-measure

Balie 0.321 0.293 0.306
FOX 0.505 0.543 0.523
Illinois 0.524 0.614 0.565
OpenNLP 0.351 0.233 0.280
Spotlight 0.513 0.411 0.456
Stanford 0.548 0.662 0.600

the runtime for single documents as well as the result quality in terms of micro-precision, recall and F1-
measure. We used 1 data and 1 task generator for our benchmark. The data generator was configured to
run through 5 velocity phases (2000 documents/phase) with differing delays between single documents
in each phase. The delays between the documents were set to {1s, 12 s, 14 s, 18 s, 0s} leading to an increasing
workload of {1, 2, 4, 8,≈800} documents per second.

The results show that all approaches scale well when provided with enough hardware. As expected,
FOX is the slowest solution as it relies on calling 5 underlying fully-fledged entity recognition tools
and merging their results. Our results also indicate that a better load balancing could lead to even better
runtimes. In particular, the runtime per documents starts to increase as soon as the tool cannot handle
the incoming amount of documents in time and the documents start to be queued (see Phase 2 to 4).

6. Application

The HOBBIT platform is now being used by more than 300 registered users that already have executed
more than 13000 experiments.25 The HOBBIT platform was also used to carry out eleven benchmarking
challenges for Big Data applications. It was used for the Grand Challenge of the 11th and 12th ACM
International Conference on Distributed and Event-Based Systems (DEBS 2017 and 2018) [14, 15].
The 2017 challenge was aimed at event-based systems for real-time analytics. Overall, more than 20
participating systems had to identify anomalies from a stream of sensor data.

The Open Knowledge Extraction Challenges 2017 and 2018 used the platform for benchmarking
Named Entity Recognition, Entity Linking and Relation Extraction approaches [12, 13]. For one of the
challenge tasks a setup similar to our evaluation in Section 5.2 was used. This evaluation revealed that the
scalability of some systems decreases drastically under realistic loads. While some of the benchmarked
solutions were able to answer single requests efficiently, they became slower than competing systems
when challenged with a large amount of requests [12].

25See http://master.project-hobbit.eu/experiments.

http://master.project-hobbit.eu/experiments


16 M. Röder et al. / HOBBIT

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

The Mighty Storage Challenges 2017 and 2018 focused on benchmarking triple stores [10, 11]. Their
RDF data ingestion tasks showed that most triple stores are unable to consume and retrieve triples (e.g.,
sensor or event data) efficiently. This insight suggests that current triple stores need to significantly
improve in their scalability before they can be used for Big Data applications out of the box. The deriva-
tion of this insight was made possible by HOBBIT’s support of distributed systems and its distributed
implementation that allows the generation of enough data and queries to overload the triple stores.

7. Conclusion

This paper presents the architecture of the HOBBIT benchmarking platform, which is based on real re-
quirements collected from 68 experts from across the world. The platform is designed to be modular and
easy to scale up. HOBBIT is hence the first benchmarking platform that can be used for benchmarking
Big LD systems. The platform has already been used in several challenges and was shown to address the
requirements of large-scale benchmarking for storage, predictive maintenance, knowledge acquisition
and question answering. These challenges showed clearly that HOBBIT can be used to measure both the
scalability and accuracy of Big Data platforms. As the platform is not limited to a particular step of the
Linked Data life cycle and can be configured to use virtually any data generator and task generator, it
is well suited for benchmarking any step of the Big LD life cycle. A fully fledged implementation of
the platform is available as an open-source solution and has started to attract the developer community.
While writing this paper, the platform is planned to be used for the Semantic Web Challenge 2019 as
well as the OAEI Challenge 2019.26 It will also serves as one of the key stones of the Innovative Training
Network (ITN) KnowGraphs during the next years. We hence aim to extend it so as to build the reference
point for benchmarking Big LD applications.

Acknowledgments

This work was supported by the European Union’s H2020 research and innovation action HOBBIT
(GA 688227), by the Innovative Training Network KnowGraphs (GA 860801) and the BMWI project
RAKI.

Add number for RAKI

References

[1] S. Auer, J. Lehmann, A.-C. Ngonga Ngomo and A. Zaveri, Introduction to linked data and its lifecycle on the web,
in: Reasoning Web. Semantic technologies for intelligent data access, Springer, 2013, pp. 1–90. doi:10.1007/978-3-642-
23032-5_1.

[2] M. Röder, R. Usbeck and A.-C. Ngonga Ngomo, GERBIL – Benchmarking Named Entity Recognition and Linking
Consistently, Semantic Web Journal (2017), 1–19. doi:10.3233/SW-170286.

[3] J. Gray and C. Levine, Thousands of DebitCredit Transactions-Per-Second: Easy and Inexpensive, arXiv preprint
cs/0701161 (2007). https://arxiv.org/abs/cs/0701161.

[4] C. Unger, C. Forascu, V. Lopez, A.-C.N. Ngomo, E. Cabrio, P. Cimiano and S. Walter, Question answering over
linked data (QALD-4), in: Working Notes for CLEF 2014 Conference, 2014. http://www.ceur-ws.org/Vol-1180/
CLEF2014wn-QA-UngerEt2014.pdf.

26See https://dice-group.github.io/semantic-web-challenge.github.io/ and http://oaei.ontologymatching.org/2019/.

https://arxiv.org/abs/cs/0701161
http://www.ceur-ws.org/Vol-1180/CLEF2014wn-QA-UngerEt2014.pdf
http://www.ceur-ws.org/Vol-1180/CLEF2014wn-QA-UngerEt2014.pdf
https://dice-group.github.io/semantic-web-challenge.github.io/
http://oaei.ontologymatching.org/2019/


M. Röder et al. / HOBBIT 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[5] G. Tsatsaronis, M. Schroeder, G. Paliouras, Y. Almirantis, I. Androutsopoulos, E. Gaussier, P. Gallinari, T. Artieres,
M.R. Alvers, M. Zschunke et al., BioASQ: A Challenge on Large-Scale Biomedical Semantic Indexing and Question
Answering., in: AAAI fall symposium: Information retrieval and knowledge discovery in biomedical text, Citeseer, 2012.

[6] M. Cornolti, P. Ferragina and M. Ciaramita, A framework for benchmarking entity-annotation systems, in: 22nd World
Wide Web Conference, 2013. doi:10.13140/2.1.4942.9766.

[7] F. Conrads, J. Lehmann, M. Saleem, M. Morsey and A.-C. Ngonga Ngomo, IGUANA: A Generic Framework for Bench-
marking the Read-Write Performance of Triple Stores, in: The Semantic Web – ISWC 2014, Lecture Notes in Computer
Science, Vol. 8796, Springer International Publishing, 2017, pp. 519–534. doi:10.1007/978-3-319-68204-4_5.

[8] J.M. Cavanillas, E. Curry and W. Wahlster, New horizons for a data-driven economy: a roadmap for usage and exploita-
tion of big data in Europe, Springer, 2016.

[9] M.D. Wilkinson, M. Dumontier, J.I. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten,
L.B. da Silva Santos, P.E. Bourne, J. Bouwman, A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds,
C.T. Evelo, R. Finkers, A. Gonzalez-Beltran, A.J.G. Gray, P. Groth, C. Goble, J.S. Grethe, J. Heringa, P.A.C. Hoen,
R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J. Lusher, M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra,
M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M.A. Swertz, M. Thomp-
son, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao and
B. Mons, The FAIR Guiding Principles for scientific data management and stewardship, Scientific data 3 (2016), 160018.
doi:https://doi.org/10.1038/sdata.2016.18.

[10] K. Georgala, M. Spasić, M. Jovanovik, H. Petzka, M. Röder and A.-C. Ngonga Ngomo, MOCHA2017: The Mighty
Storage Challenge at ESWC 2017, in: Semantic Web Challenges: Fourth SemWebEval Challenge at ESWC 2017, 2017.
doi:10.1007/978-3-319-69146-6_1.

[11] K. Georgala, M. Spasić, M. Jovanovik, V. Papakonstantinou, C. Stadler, M. Röder and A.-C.N. Ngomo, MOCHA2018:
The Mighty Storage Challenge at ESWC 2018, in: Semantic Web Challenges, D. Buscaldi, A. Gangemi and
D. Reforgiato Recupero, eds, Springer International Publishing, Cham, 2018, pp. 3–16. ISBN 978-3-030-00072-1.
doi:10.1007/978-3-030-00072-1_1.

[12] R. Speck, M. Röder, S. Oramas, L. Espinosa-Anke and A.-C. Ngonga Ngomo, Open Knowledge Extraction Challenge
2017, in: Semantic Web Challenges: Fourth SemWebEval Challenge at ESWC 2017, Communications in Computer and
Information Science, Springer International Publishing, 2017. doi:10.1007/978-3-319-69146-6_4.

[13] R. Speck, M. Röder, F. Conrads, H. Rebba, C.C. Romiyo, G. Salakki, R. Suryawanshi, D. Ahmed, N. Srivastava, M. Ma-
hajan and A.-C.N. Ngomo, Open Knowledge Extraction Challenge 2018, in: Semantic Web Challenges, D. Buscaldi,
A. Gangemi and D. Reforgiato Recupero, eds, Springer International Publishing, Cham, 2018, pp. 39–51. ISBN 978-3-
030-00072-1. doi:10.1007/978-3-030-00072-1_4.

[14] V. Gulisano, Z. Jerzak, R. Katerinenko, M. Strohbach and H. Ziekow, The DEBS 2017 Grand Challenge, in: Proceedings
of the 11th ACM International Conference on Distributed and Event-based Systems, DEBS ’17, ACM, 2017, pp. 271–273.
doi:10.1145/3093742.3096342.

[15] V. Gulisano, Z. Jerzak, P. Smirnov, M. Strohbach, H. Ziekow and D. Zissis, The DEBS 2018 Grand Challenge, in: Pro-
ceedings of the 12th ACM International Conference on Distributed and Event-based Systems, DEBS ’18, ACM, 2018,
pp. 191–194. ISBN 978-1-4503-5782-1. doi:10.1145/3210284.3220510.

[16] G. Napolitano, R. Usbeck and A.-C.N. Ngomo, The Scalable Question Answering Over Linked Data (SQA) Challenge
2018, in: Semantic Web Challenges, D. Buscaldi, A. Gangemi and D. Reforgiato Recupero, eds, Springer International
Publishing, Cham, 2018, pp. 69–75. ISBN 978-3-030-00072-1. doi:10.1007/978-3-030-00072-1_6.

[17] M. Röder, T. Saveta, I. Fundulaki and A.-C.N. Ngomo, HOBBIT link discovery benchmarks at ontology matching 2017.,
in: Proceedings of the 12th International Workshop on Ontology Matching (OM-2017), Vienna, Austria, October 21,
2017., P. Shvaiko, J. Euzenat, E. Jiménez-Ruiz, M. Cheatham and O. Hassanzadeh, eds, CEUR-WS, 2017, pp. 209–210.
http://ceur-ws.org/Vol-2032/om2017_poster2.pdf.

[18] E. Jiménez-Ruiz, T. Saveta, O. Zamazal, S. Hertling, M. Roder, I. Fundulaki, A. Ngonga Ngomo, M. Sherif, A. Annane,
Z. Bellahsene, S. Ben Yahia, G. Diallo, D. Faria, M. Kachroudi, A. Khiat, P. Lambrix, H. Li, M. Mackeprang, M. Moham-
madi, M. Rybinski, B.S. Balasubramani and C. Trojahn, Introducing the HOBBIT platform into the ontology alignment
evaluation campaign, in: Proceedings of the 13th International Workshop on Ontology Matching (OM 2018), Monterey,
CA, USA, October 8, 2018., P. Shvaiko, J. Euzenat, E. Jiménez-Ruiz, M. Cheatham and O. Hassanzadeh, eds, CEUR-WS,
2018, pp. 49–60. http://ceur-ws.org/Vol-2288/om2018_LTpaper5.pdf.

[19] A. Algergawy, M. Cheatham, D. Faria, A. Ferrara, I. Fundulaki, I. Harrow, S. Hertling, E. Jiménez-Ruiz, N. Karam,
A. Khiat, P. Lambrix, H. Li, S. Montanelli, H. Paulheim, C. Pesquita, T. Saveta, D. Schmidt, P. Shvaiko, A. Splendiani,
E. Thiéblin, C. Trojahn, J. Vataščinová, O. Zamazal and L. Zhou, Results of the Ontology Alignment Evaluation Initiative
2018, in: Proceedings of the 13th International Workshop on Ontology Matching (OM 2018), Monterey, CA, USA, October
8, 2018., P. Shvaiko, J. Euzenat, E. Jiménez-Ruiz, M. Cheatham and O. Hassanzadeh, eds, CEUR-WS, 2018, pp. 76–116.
http://ceur-ws.org/Vol-2288/oaei18_paper0.pdf.

http://www.isbnsearch.org/isbn/978-3-030-00072-1
http://www.isbnsearch.org/isbn/978-3-030-00072-1
http://www.isbnsearch.org/isbn/978-3-030-00072-1
http://www.isbnsearch.org/isbn/978-1-4503-5782-1
http://www.isbnsearch.org/isbn/978-3-030-00072-1
http://ceur-ws.org/Vol-2032/om2017_poster2.pdf
http://ceur-ws.org/Vol-2288/om2018_LTpaper5.pdf
http://ceur-ws.org/Vol-2288/oaei18_paper0.pdf


18 M. Röder et al. / HOBBIT

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[20] M. Nentwig, M. Hartung, A.-C. Ngonga Ngomo and E. Rahm, A survey of current Link Discovery frameworks, Semantic
Web (2015), 1–18. doi:10.3233/SW-150210.

[21] E. Daskalaki, G. Flouris, I. Fundulaki and T. Saveta, Instance matching benchmarks in the era of Linked Data, Web
Semantics: Science, Services and Agents on the World Wide Web (2016).

[22] Y. Guo, Z. Pan and J. Heflin, LUBM: A Benchmark for OWL Knowledge Base Systems, J. Web Sem. 3(2–3) (2005),
158–182.

[23] C. Bizer and A. Schultz, The Berlin SPARQL Benchmark., Int. J. Semantic Web Inf. Syst. 5(2) (2009), 1–24.
doi:10.4018/jswis.2009040101.

[24] M. Morsey, J. Lehmann, S. Auer and A.N. Ngomo, DBpedia SPARQL Benchmark - Performance Assessment with Real
Queries on Real Data, in: The Semantic Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany,
October 23-27, 2011, Proceedings, Part I, 2011, pp. 454–469. doi:10.1007/978-3-642-25073-6_29.

[25] M. Saleem, Q. Mehmood and A.N. Ngomo, FEASIBLE: A Feature-Based SPARQL Benchmark Generation Framework,
in: The Semantic Web - ISWC 2015 - 14th International Semantic Web Conference, Bethlehem, PA, USA, October 11-15,
2015, Proceedings, Part I, 2015, pp. 52–69. doi:10.1007/978-3-319-25007-6_4.

[26] B.M. Sundheim, Tipster/MUC-5: Information Extraction System Evaluation, in: Proceedings of the 5th Conference on
Message Understanding, 1993. doi:10.3115/1072017.1072023.

[27] E.F. Tjong Kim Sang and F. De Meulder, Introduction to the CoNLL-2003 Shared Task: Language-Independent Named
Entity Recognition, in: Proceedings of CoNLL-2003, 2003. doi:10.3115/1119176.1119195.

[28] D. Carmel, M.-W. Chang, E. Gabrilovich, B.-J.P. Hsu and K. Wang, ERD 2014: Entity Recognition and Disambiguation
Challenge, SIGIR Forum (2014). doi:10.1145/2701583.2701591.

[29] C. Unger, C. Forascu, V. Lopez, A.N. Ngomo, E. Cabrio, P. Cimiano and S. Walter, Question Answering over Linked
Data (QALD-5), in: CLEF, 2015. http://ceur-ws.org/Vol-1391/173-CR.pdf.

[30] R. Usbeck, M. Röder, M. Hoffmann, F. Conrad, J. Huthmann, A.-C. Ngonga-Ngomo, C. Demmler and C. Unger, Bench-
marking Question Answering Systems, Semantic Web Journal (2018). doi:10.3233/SW-180312.

[31] S. Ceesay, A.D. Barker and B. Varghese, Plug and Play Bench : simplifying big data benchmarking using containers, in:
2017 IEEE International Conference on Big Data, 2017. https://arxiv.org/abs/1711.09138.

[32] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte and H.-A. Jacobsen, BigBench: Towards an Industry Standard
Benchmark for Big Data Analytics, in: Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’13, ACM, New York, NY, USA, 2013, pp. 1197–1208. doi:10.1145/2463676.2463712.

[33] D.E. Difallah, A. Pavlo, C. Curino and P. Cudre-Mauroux, OLTP-Bench: An Extensible Testbed for Benchmarking Rela-
tional Databases, Proc. VLDB Endow. 7(4) (2013), 277–288. doi:10.14778/2732240.2732246.

[34] I. Fundulaki, Deliverable 1.2.1: Requirements Specification from the Community, 2016. http://project-hobbit.eu/about/
deliverables/.

[35] F. Manola, E. Miller and B. McBride, RDF 1.1 Primer, W3C Working Group Note (2014). https://www.w3.org/TR/2014/
NOTE-rdf11-primer-20140624/.

[36] D. Brickley, R.V. Guha and B. McBride, RDF Schema 1.1, W3C Working Group Note (2014). http://www.w3.org/TR/
2014/REC-rdf-schema-20140225/.

[37] T. Lebo, S. Sahoo and D. McGuinness, PROV-O: The PROV Ontology, W3C Recommendation (2013). http://www.w3.
org/TR/2013/REC-prov-o-20130430/.

[38] R. Cyganiak and D. Reynolds, The RDF Data Cube Vocabulary, W3C Recommendation (2014). http://www.w3.org/TR/
2014/REC-vocab-data-cube-20140116/.

[39] J.J. Carroll and J.Z. Pan, XML Schema Datatypes in RDF and OWL, W3C Working Group Note (2006). http://www.w3.
org/TR/2006/NOTE-swbp-xsch-datatypes-20060314/.

[40] M. Saleem, I. Ali, A. Hogan, Q. Mehmood and A.-C. Ngonga Ngomo, LSQ: The Linked SPARQL Queries Dataset, in:
International Semantic Web Conference (ISWC), 2015. doi:10.1007/978-3-319-25010-6_15.

[41] R. Speck and A.-C. Ngonga Ngomo, Ensemble Learning for Named Entity Recognition, in: The Semantic Web –
ISWC 2014, Lecture Notes in Computer Science, Vol. 8796, Springer International Publishing, 2014, pp. 519–534.
doi:10.1007/978-3-319-11964-9_33.

[42] D. Nadeau, Balie–baseline information extraction: Multilingual information extraction from text with machine learning
and natural language techniques, Technical Report, Technical report, University of Ottawa, 2005. http://balie.sourceforge.
net/dnadeau05balie.pdf.

[43] L. Ratinov and D. Roth, Design Challenges and Misconceptions in Named Entity Recognition, in: Proceedings of the
Thirteenth Conference on Computational Natural Language Learning, CoNLL ’09, Association for Computational Lin-
guistics, 2009, pp. 147–155. doi:10.3115/1596374.1596399.

[44] J. Baldridge, The opennlp project, 2005. http://opennlp.apache.org/index.html.
[45] J.R. Finkel, T. Grenager and C. Manning, Incorporating non-local information into information extraction systems by

Gibbs sampling, in: ACL, 2005, pp. 363–370. doi:10.3115/1219840.1219885.

http://ceur-ws.org/Vol-1391/173-CR.pdf
https://arxiv.org/abs/1711.09138
http://project-hobbit.eu/about/deliverables/
http://project-hobbit.eu/about/deliverables/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
http://www.w3.org/TR/2006/NOTE-swbp-xsch-datatypes-20060314/
http://www.w3.org/TR/2006/NOTE-swbp-xsch-datatypes-20060314/
http://balie.sourceforge.net/dnadeau05balie.pdf
http://balie.sourceforge.net/dnadeau05balie.pdf
http://opennlp.apache.org/index.html


M. Röder et al. / HOBBIT 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[46] P.N. Mendes, M. Jakob, A. Garcia-Silva and C. Bizer, DBpedia Spotlight: Shedding Light on the Web of Documents, in:
7th International Conference on Semantic Systems (I-Semantics), 2011. doi:10.1145/2063518.2063519.

[47] D. Moussallem, R. Usbeck, M. Röder and A.-C. Ngonga Ngomo, MAG: A Multilingual, Knowledge-base Ag-
nostic and Deterministic Entity Linking Approach, in: K-CAP 2017: Knowledge Capture Conference, ACM, 2017.
doi:10.1145/3148011.3148024.


	Introduction
	Related Work
	Requirements
	Functional requirements
	Qualitative requirements
	FAIR principles

	Platform Architecture
	Overview
	Platform Components
	Platform Controller
	Storage
	Ontology
	Analysis
	Graphical User Interface
	Message Bus
	User Management
	Repository
	Resource Monitoring
	Logging

	Benchmark Components
	Benchmark Controller
	Data generator
	Task generator
	Evaluation storage
	Evaluation Module

	Benchmarked System Components
	Benchmark Workflow
	Initialisation Phase
	Benchmarking Phase
	Evaluation Phase


	Evaluation
	Triple store benchmark
	Knowledge Extraction benchmark use case

	Application
	Conclusion
	Acknowledgments
	References

