February 2017

Ten years of Stream Reasoning.
Now what?

Daniele DELL’AGLIO *', Emanuele DELLA VALLEP",
Frank VAN HARMELEN ¢ and Abraham BERNSTEIN

& Department of Informatics - University of Zurich
b DEIB - Politecnico di Milano.
¢ Vrije Universiteit Amsterdam.

Abstract. Stream reasoning studies the application of inference tech-
niques to data characterised by being highly dynamic. It can find appli-
cation in several settings, from Smart Cities to Industry 4.0, from In-
ternet of Things to Social Media analytics. This year stream reasoning
turns ten, and in this article we analyse its growth. In the first part, we
trace the main results obtained so far, by presenting the most prominent
studies. Looking at the past is useful to prepare for the future: in the
second part, we present a set of open challenges and issues that stream
reasoning will face in the next future.

Keywords. Stream Reasoning; Stream Processing.

1. Introduction

Increasingly, applications require real-time processing of heterogeneous data
streams together with large background knowledge. Consider the following exam-
ples. Which electricity-producing turbine has sensor readings similar (i.e., Pearson
correlated by at least 0.75) to any turbine that subsequently had a critical failure
in the past year [75]? When a sensor on a drill in an oil-rig indicates that it is about
to get stuck, how long—according to historical records—can I keep drilling [74]?
Where am I likely going to run into a traffic jam during my commute tonight and
how long will it take, given current weather and traffic conditions [86,109,3]7 Who
are the current top influencer users that are driving the discussion about the top
emerging topics across all the social networks [71,13]? Where shall T spend my
evening given the presence of people and what their doing (predicted analysing
the spatio-temporal correlation between privacy-preserving aggregates of Mobile
Telecom Data and of geo-located Social Media posts) [14]7 Who should be asked
to go exercising, given people’s past, possibly sedentary behaviour and allergies
(accessed in a privacy-preserving manner) as well as current weather conditions
and pollution/allergen levels [45]7
To answer these queries a system must be able to [37]:

LCorresponding Author: Daniele Dell’Aglio; E-mail: dellaglio@ifi.uzh.ch.

February 2017

R1. handle volume: a typical oil production platform is equipped with about
400.000 sensors; Facebook, as of February, 2017, has 1.86 billion of monthly
active users?, etc.

R2. handle velocity: sensors on a power generation turbine can easily generate
thousands of observations per minute; Instagram’s users, as of February,
2017, like on average 2.92 million post per minute?; etc.

R3. handle wvariety: a large variety of static and streaming data sources and
data management solutions exists in any domain. For instance, Milano has
deployed some 600 traffic light systems equipped with inductive loops in the
last 10 years: they use five different data formats, have different operational
conditions, etc. Similarly, in social media, each network has its own data
model and APIs.

R4. cope with incompleteness: sensors can run out of battery or networking links
can break; in social media parts of the conversation may occur outside the
social network [12], or the APIs that are used to access the social stream
may have a limited sampling rate.

R5. cope with noise: sensors can be imperfect, faulty, or out of its ideal opera-
tional range; text can be worded in an ironic way and a sentiment mining
solution may be unable to detect it with 100% correctness.

R6. provide answers in a timely fashion: answers should be generated within
well-specified latency bounds, which depend on the application scenarios.
The time available to answer depends on the application domain: in call
centres, routing needs to be decided in sub-seconds (in real-time); in oil
operations, the detection of dangerous situations must occur within minutes
(in near real-time).

R7. support fine-grained information access: the issued query may require to
locate exactly a turbine, a means of public transportation, an agent in a
contact centre among thousands of similar ones.

RS. integrate compler domain models: social media analytics may require topic
models to make sense of a conversation; oil production control systems may
require to model operational and control processes; traffic monitors may
require rich background knowledge about topology, planned and unplanned
events to improve the accuracy of the analyses.

R9. capture what users want: the query should let users define analytics-aware
tasks such as Pearson correlation as a mean of similarity, or complex con-
cepts such as traffic jam and top influencer user.

Ten years ago, no system was able to address all these requirements simulta-
neously. The management of highly dynamic data (R2) in a timely fashion (R6)
developed around the idea of stream processing, a computation paradigm where
data is processed in motion, i.e., on the fly and as soon as it becomes available.
At that time, the most advanced stream processing solutions were developed in
the context of Data Stream Management Systems (DSMSs) and Complex Event
Processors (CEPs) [30]. DSMSs transform data streams in timestamped relations

2See https://uww.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
Accessed on February, 2017.
3See https://blog.hootsuite.com/instagram-statistics/ Accessed on February, 2017.

February 2017

(usually through a so-called window operator) and process them with well known
techniques such as relational algebras [7]. DSMSs allow the construction of sys-
tems able to compute aggregations and statistics (e.g. averages and Pearson cor-
relation) over streaming data. CEPs, instead, look for patterns in the streams to
identify when complex events occur [90]. CEPs focus on the derivation of (com-
plex) events from the matching of patterns of events (e.g., sequences) in the input
data. Both DSMS and CEP techniques were able to provide reactive fine-grained
information access (R7) in the presence of noisy data (R5).

These system were, however, limited when data was heterogeneous (R3), with
complex domain models (R8) and needed to combine rich background knowledge.
In those cases, users, to solve the desired tasks, were required to put large manual
effort in developing complex networks of queries. There was a high potential in
finding systematic solutions to cope with these problems. The research of that
years on Knowledge Representation (KR) and Semantic Web (SemWeb) were
bringing relevant inputs on that direction. The study of complexity of description
logics were bringing new results, opening the door to technique able to perform
reasoning tasks in polynomial and sub-polynomial time. Techniques like Ontol-
ogy Based Data Access (OBDA) [26] were starting to show that complex domain
models (R8) can be used to offer fine-grained information access (R4) to hetero-
geneous (R3) and incomplete datasets (R4). But these studies were focusing on
static data, and solutions lacked the ability to provide reactive answers on data
streams and to handle noise.

Table 1. The requirements Stream Reasoning aims at covering and how DSMS, CEP and Se-
mantic Web cover them (vindicates which area fits the requirement better).

Envisioned
Requirement DSMS/CEP SemWeb Stream

Reasoning
R1: Volume v v v
R2: Velocity v v
R3: Variety v v
R4: Incompleteness v v
R5: Noise v v
R6: Timely fashion v v
R7: Fine-grained access v v v
R8: Complex domains v v
R9: What users want v v

CEP, DSMS, KR and SemWeb supplied the ingredients to Stream Reason-
ing [37]. As the name suggest, this new research trend aims at studying how to
perform online logical reasoning over highly dynamic data. Stream reasoners were
envisioned as systems capable to address all the requirements above simultane-
ously (see Table 1).

Even if the goal can be easily stated, satisfying all of the above-stated require-
ments is challenging in multiple ways. Theoretically, it is difficult to create com-
prehensive data and processing models. Practically, it is non-trivial to guarantee

February 2017

reactiveness given the required functional requirements. Nonetheless, we have seen
the emergence of various results [91,38]. The large majority of them where in the
Semantic Web community, but also the broader Artificial Intelligence, Robotics,
Databases, and Distributed Systems communities performed investigations in the
Stream Reasoning area.

Focusing on the works of the semantic web community, different research
groups proposed (i) data models and vocabularies to capture data streams through
RDF and ontologies (e.g. [68,19]), (ii) continuous query models, languages and
prototypes (e.g. [16,25,82,6]), inspired by SPARQL [108] and collected under the
RDF Stream Processing (RSP) label, (iii) extensions of the reasoning tasks over
streams, as consistency check and closure (e.g. [17,110,83]), and (iv) applications
built on top of the aforementioned results (e.g. [13,121,72]). However, a complete
answer to the stream reasoning research question is still missing.

For this reason, in this article, we introduce a reference model to capture, or-
ganize and summarize the results that the semantic web community has obtained
so far (Section 2). Then, we identify the challenges to address in the next years by
analysing the research results of other communities and the current trends in big
data processing (Section 3). In Section 4, we wrap up and draw some conclusions.

2. A reference model for stream reasoning

In the last ten years, several techniques have been proposed under the stream
reasoning label. Such techniques are heterogeneous in terms of input, output and
use cases. To present them, we present Figure 1 as a reference model for stream
reasoning [40].

Application
DSMS-like query Reitsrgﬁg:

Graph-level entailment

Window merge CEP-like query

Window-level entailment

Window operator

Stream-level entailment

Stream

Figure 1. A model to describe stream reasoners

In the remainder of this paper, we denote a data stream as a sequence of
time-annotated items ordered according to a temporal criteria. Each item brings
an information unit, e.g. a sensor observation, a social network action or a stock

February 2017

exchange. It is possible to represent the stream items in different formats. In
the semantic web context, data is usually modelled according to RDF [32], a
W3C recommendation where data is structured as directed labelled graph, with
vertices and edges representing, respectively, resources and relations among them.
We name RDF stream a stream where items are represented according to RDF,
i.e., each item is represented through a directed labelled graph.

We now present a reference architecture for a generic continuous query an-
swering system over streams, identified in Figure 1 by the blue blocks. Window
operators manage the access to the stream: they create time-dependent finite
views over the streams, namely windows, over which processors perform the tasks.
Window contains a portion of the input streams, i.e. a set of timestamped data
items, that represents the data needed to solve the task at the current time in-
stant. Several types of window operators exist, initially defined in CEP and DSMS
research [30].

CEP aims at verifying if given sequences of events happen in the stream.
In this sense, time annotations are key, since engines use them to determine if
temporal constraints defined in the event patterns are satisfied. When not spec-
ified, event patterns are evaluated over a large portion of the stream, i.e. from
the moment on which the engine starts to observe the stream up to the current
moment. We can model this behaviour through landmark windows. Fixed an ini-
tial time instant, the window expands over time to capture portion of the stream
that grows over time.

DSMSs perform operations that do not require to process time annotations
after that windows have been computed, like aggregations and filters. That means,
while the content of the stream items is important to solve the task, time anno-
tations are not. In this sense, the window merge is an operation that moves from
temporal data (i.e. time-annotated data items) to atemporal one (i.e. a collection
of data items). Sliding windows are the typical window operators considered in
DSMS. This operator creates a window with a fixed width in terms of time units
or data items. The operator shifts (slides) the window over time, capturing the
most recent part of the stream.

It is worth noting that time in CEP and DSMS is treated in different ways:
in the former it has a predominant role while evaluating the event patterns, while
in the latter it is used to identify the relevant portion of data over which an
atemporal operation is performed.

How DSMS and CEP can be extended to perform reasoning tasks is one of
the first problems studied in stream reasoning. In the semantic web community,
this was addressed by adding DSMS and CEP features to SPARQL [63]—the
query language for RDF-data recommended by W3C. Every SPARQL Query is
built from Basic graph patterns (BGPs). A BGP is a direct labelled graph where
vertices and edges can be either resources or variables. The evaluation of a BGP
over an RDF graph consists of finding the set of mappings between variables
in the BGP and the resources in the RDF graph such that the BGP matches
the RDF graph. The presence of an inference process in SPARQL is modelled
through entailment regimes [59]. Entailment regimes affect the basic graph pattern
evaluation by extending the matching definition to take the edges and the nodes
that can be logically inferred from those explicitly stated into account.

February 2017

When we move to a model for processing streams, as the one in Figure 1, we
may observe that there is not one and only one correct moment to take the infer-
ence process into account. In other words, the key question we need to answer is:
while processing a stream, when is the correct moment to take the inference pro-
cess into account? The reference model described above allows different options,
depicted through the orange boxes in Figure 1. Inference can take place before or
after the window (giving, respectively, stream- and window-level entailments), or
still after that the window content is merged (giving graph-level entailment). This
decision may affect the performance, the result and the behaviour of the engine.
Taking into account this framework, we can group the main works developed in
the state of the art of stream reasoning, in four different groups, that we present
in the rest of this section.

2.1. Graph-level entailment

The last possible possible moment to take into account the inference processes is
after the window merge. That means a window captures a portion of the stream
and a merge operation creates a collection from the stream item contents.

We name graph-level entailment a continuous query evaluation where the
inference process is considered at this moment. As explained above, this enables
the execution of typical DSMS-like queries, e.g. aggregations and filters, but make
not possible to evaluate CEP-like queries, since temporal annotations are lost and
it is not possible to verify if temporal constraints are satisfied. This is represented
in Figure 1, where the graph-level entailment stacks on DSMS-like queries but
not on CEP-like ones.

The graph-level entailment can be viewed as a direct application of SPARQL
entailment regimes, since the inference process is taken into account in the context
of the evaluation of (basic) graph patterns over graphs.

A large amount of research can be captured by this level. In the following,
we group it in two main groups: systems that work under a simple entailment
regime, i.e. RDF entailment, and the ones that considers more complex reasoning
formalisms, e.g. Description Logics and ASP. They are presented respectively in
Sections 2.1.1 and 2.1.3. To enable the comprehension of the latter, we briefly
review some prominent work in incremental reasoning in Section 2.1.2.

2.1.1. Stream reasoning at graph level under simple entailment regime

The first case we consider is the one where the RDF entailment process is involved,
that in SPARQL is named simple entailment regime. When a SPARQL query is
evaluated under this regime, the engine verifies if a graph pattern matches the
input graph, without considering ontological language or inference processes.

The first generation of continuous query answering systems for RDF data
streams is represented in this category: engines where queries are registered and
answers are continuously produced when new data is made available.

Several languages and prototypes were built by following the DSMS vi-
sion: sliding windows to capture finite portions of the streams to be queried
through SPARQL as collections of RDF statements. Between 2010 and 2012, dif-
ferent groups proposed languages as the Continuous SPARQL (C-SPARQL) lan-

February 2017

guage [16], CQELS-QL [82] and SPARQLgtreqam [25]. Such languages are similar
and relies on the idea of extending SPARQL with sliding windows. For example,
C-SPARQL extends the FROM clause in order to support sliding windows, while
CQELS-QL pushes sliding windows in the GRAPH clause. There are differences
on the prototyping sides as well. The C-SPARQL engine and CQELS, implement-
ing respectively C-SPARQL and CQELS-QL, take as input RDF streams and pro-
cess them as extended SPARQL query processors (e.g. ARQ*). morph-stream, an
implementation of SPARQLtrcam, adopts an OBDA-like approach: it processes
relational streams by transforming the query from SPARQLgtreqm to one to be
registered to a DSMS engine such as Esper or GSN.

A different approach is adopted by the Incremental eNgine for STANding
Sparql — INSTANS [112]. As query language, it adopts SPARQL 1.1, with an
extension to its query evaluation model to continuously query data streams. The
implementation of INSTANS relies on the RETE algorithm [54]: tasks are ex-
pressed as networks of queries and compiled in RETE-like structures to evaluate
the results. More detailed comparison analyses of those solutions may be found
in [41] and on the W3C RSP-CG wiki®.

2.1.2. Incremental reasoning

Among the techniques to do reasoning, the closest to the stream reasoning idea are
the incremental reasoning ones. They have been developed to cope with changes
in knowledge bases. The intuition is to modify part of the materialisation of a
knowledge base when updates happen, without re-materialising everything from
scratch. As update operations occur these techniques identify the facts that have
to be removed — since they were derived by deleted facts — and added — since they
can be inferred by new facts. In this way, it is possible to avoid the recomputation
of the whole materialisation upon changes.

DReD [128] has been proposed in 2005 by Volz et al. and it is inspired by
techniques of view maintenance in databases. The idea is to compute two sets of
axioms to be added and removed through a three-step process. In the first step,
deletions are computed starting from the facts that should be deleted. This step
produces an overestimation, due to the fact that some derived facts may still be
inferred from other non-deleted facts. In the second step, the algorithm looks for
these facts and remove them from the facts to be deleted. In the last step, new
derivations are computed starting from the axioms that have been added to the
knowledge base.

The first two steps of the DReD algorithm are critical for the performance of
the technique: a considerable amount of computational effort may be required to
identify the facts to be labelled as to be deleted in the first step and rectracted
in the second. To overcome this limit, Motik and al. propose the Backward/For-
ward algorithm [97] in 2015. The idea is to use a combination of backward and
forward inference to limit the number of overestimations in the first step. An im-
plementation of this algorithm is available in RDFox [101], an in-memory datalog
engine.

4Cf. https://jena.apache.org/documentation/query/.
5Cf. https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation

February 2017

A different approach is the one considered by Ren and Pan in Truth Main-
tenance Systems in 2011 [110]. Differently from DReD, this technique builds and
maintains a dependency graph. When deletions occur, this graph is used to decide
if derived facts should be removed; when additions happen, the graph is updated
by adding new edges and vertices. This approach is optimised for ££1T [10,11].

DynamiTE [127] is a framework proposed in 2013 to maintain the material-
isation incrementally. One of the novelties introduced by Dynamite is the paral-
lelisation of the inference process. The framework supports DReD and a count-
ing algorithm proposed by the authors for the pDF fragment [100] of RDFS. On
additions, DynamiTE recomputes the materialisation to add the new entailments
through a parallel Datalog evaluation. On removals, it deletes the explicit and
entailed axioms no longer valid. Several algorithms can perform this action: the
authors considered DReD and a “counting” algorithm they defined, that exploits
the idea of counting the number of justifications that entailed it.

2.1.3. Stream reasoning at graph level under other entailment regimes

Moving to non-simple entailment regimes opens a set of challenges given by the
introduction of the ontological languages and the associated inference processes.

One of the first attempts of building a stream reasoner is Streaming Knowl-
edge Bases [129] in 2008. The idea was to pipe a DSMS engine, TelegraphCQ),
with a reasoning engine, the Jena Rule engine. The system is able to performs
RDFS inference.

The Incremental Materialization for RDF Streams algorithm (IMaRS) [41],
proposed in 2011 for the RDFS+ ontological language takes a step further. This
technique focuses on the incremental maintenance of a window content as the
window slides. The intuition behind this algorithm is that in this setting, dele-
tions can be foreseen and are not random as in the incremental reasoning setting
described above. An expiration time annotation is associated to all the axioms
involved in the materialisation, and such information is exploited to identify only
the facts to be deleted, avoiding the overestimation typical of DReD. An imple-
mentation of IMaRS is available in Sparkwave [79]. It implements the algorithm
on the top of the RETE algorithm and targets the RDF Schema entailment. RDF
schema axioms are encoded as RETE rules and organised in a network. When
new facts are added to the system, they are matched against the rules.

Another stream reasoner is StreamRule [95], proposed in 2013. As Streaming
Knowledge Bases, the system is designed as a two-layer approach. The first layer is
an RSP engine acting as a filter, that reduces the amount of data to be considered
in the inference process. The second layer is a reasoning engine. What makes
StreamRule unique w.r.t. the solution described above is the adoption of Answer
Set Programming (ASP) [48], rather than a DL reasoner. ASP is a declarative
problem-solving paradigm, characterized by rich modelling language maintaining
very good performance, obtained by exploiting techniques from constraint solving.
ASP works with static knowledge; Incremental ASP [58] overcomes such a limit
and extends ASP to compute the solutions incrementally.

The principle of working on a graph captured with a time window was also ap-
plied to inductive reasoning. In [18], authors used graph-level inductive reasoning
in developing a recommendation engine that suggest topics to users.

February 2017
2.2. Window-level entailment

In the previous section, we explain that graph-level entailment is a direct applica-
tion of atemporal reasoning techniques over streams. The main drawback of this
approach is that the process uses only a subset of the information available in the
stream: it considers the data item contents but not the relative temporal annota-
tions. While DSMS queries can benefit if evaluated under graph-level entailment,
CEP-like queries do not gain advantages much advantages.

Window-level entailment overcomes these limitations by applying the infer-
ence process on the non-merged stream items captured by the window operators
declared in the query. Differently from graph-level entailment, which works on
graphs (ontologies), the window-level entailment applies the inference process to
a window, i.e. a finite sequence of timestamped data items.

The Spatial and Temporal ontology Access with a Reasoning-based Query
Language (STARQL) [102] proposes a framework to access and query heteroge-
neous sensor data through ontologies. STARQL is structured as a two-layer frame-
work, composed of an Ontology Language, to model the data and its schema, and
an Embedded Constraint Language, to compose the queries. STARQL offers win-
dow operators, clauses to express event matching and a layer to integrate static
and streaming data. STARQL uses a sequence of time-annotated ontologies to
make inference taking into account the temporal annotations of the streaming
data. Recently, STARQL has been implemented in Exastream [73], a system that
adopts an OBDA approach, similar to morph-stream.

2.3. Stream-level entailment

One of the main limitations of the window-level entailment is that it only considers
a recent portion of the stream. For example, when a sliding window computes a
new window, what happened in the past is forgotten and the inference process
considers the data contained in the new fixed window.

Stream-level entailment overcomes this limitation, considering a larger por-
tion of the stream than the one defined by the user through window operator.
Even if the name suggests that this entailment regime considers the whole stream,
in this case the reasoning is made on the top of a landmark window, which is
a window that captures the stream from an initial time instant (e.g. when the
source starts to supply the data when the engine starts to monitor the stream)
up to now.

ETALIS (Event TrAnsaction Logic Inference System) [6] is a CEP-based
stream reasoning engine. This query model processes streams where data items
are annotated with two timestamps (i.e., time intervals). Users can specify event
processing tasks in ETALIS using two declarative rule-based languages, ETALIS
Language for Events (ELE) and Event Processing SPARQL [5] (EP-SPARQL).
The former language is more expressive than the latter, even if it is less usable.
A common point is that complex events are derived from simpler events using
deductive prolog rules. EP-SPARQL supports backward temporal reasoning over
RDFS, continuously evaluating the query over the whole stream received by the
engine.

February 2017

The Logic-based framework for Analyzing Reasoning over Streams [22]
(LARS) defines a logic for modelling stream-related axioms. LARS models the no-
tion of stream as a sequence of time-annotated formulas. In addition to the usual
boolean operators (and, or, implies, not), the language introduces operators, such
as ¢ and O to express the fact that a formula holds respectively at some time
in the future and every time in the future; @ to state that a formula holds at a
specific time instant. LARS formulas can be evaluated against the whole stream,
or the scope can be limited through the usage of the H operator, that models a
window operator. Through this operator, LARS is also able to capture reasoning
at window-level entailment.

The principle of reasoning at stream-level was also applied to inductive rea-
soning. In [85], authors used stream-level inductive reasoning in predicting Knowl-
edge in an Ontology Stream.

2.4. Measuring progresses

Ten years ago, we proposed [37] to initially assess progress by measuring the degree
to which a stream reasoner meets the requirements we listed in Section 1. We left
it as a community challenge to identify how to systematically evaluate stream-
reasoning implementations against well-defined quality criteria, e.g. creating one
or more domain specific benchmarks [60].

The first proposal in this direction was SRBench [133]. It provides seventeen
continuous queries and a weather related dataset annotated with the Semantic
Sensor Network ontology. Its goal is to assess the ability of implementations to
cover different stream reasoning features even if little emphasis is dedicated to
reasoning.

A second proposal was LSBench [105]. It proposes twelve continuous queries,
a social network ontology, and a data generator. Its goal is to move from coverage
of query language features to systematic measures of well-defined quality criteria.
It does not include any reasoning, but rises the problem of assessing correctness.

The theme of correctness helped the community in opening the discussion on
what a domain specific benchmark on stream reasoning should look for [115] and
in deepening the understanding of the semantics of RDF continuous processing.
The investigations that eventually led to RSP-QL semantics [44] also delivered
CSRBench [42] as a side result. This benchmark is an extension of SRbench
that includes an oracle able to tell which result shall be expected from a given
implementation.

Two more mature proposals, CityBench [4] and YAbench [77], emerged from
those pioneering works. They provide real and synthetic workloads together with
software environments to easy the execution of the experiments and the measure-
ment of the quality criteria.

Heaven [124] is the most recent work in this area. It makes a step in the
direction of stressing expressive reasoning and offers an open-source test-stand to
run reproducible and repeatable experiments. The goal of Heaven is to offer the
community an environment where researchers can 4) take any dataset that con-
tains events originated over time, an ontology that describes the dataset, a query
workload that requires a certain entailment regime, and) run a comparative
experiment against all the stream reasoners included in the environment.

February 2017

The next step in this area should be the integration with the benchmarking
efforts that are maturing in parallel in the semantic web, e.g., the Social Net-
work benchmark of the Linked Data Benchmark Council [51], the results of the
Hobbit project [114], but also in the Big Data, e.g., the streaming workloads of
HiBench [67].

3. Open problems and challenges for the next years

Stream reasoning research progressed and expanded its initial community to a
growing number of practitioners. In this section, we can review the requirements
presented in Section 1 in the light of the current state of the art and outline the
open questions.

Table 2. A review of the stream reasoning requirements w.r.t. the current state of the art
(*=not specifically treated so far, xx= treated but not resolved, x x x=universally addressed by
all studies)

Requirement Current Stream Reasoning
R1: Volume *

R2: Velocity * K K

R3: Variety *%

R4: Incompleteness

R5: Noise *

R6: Timely fashion *k

R7: Fine-grained access * K K

R8: Complex domains *%

R9: What users need **

Table 2 summarizes the current state and serves as an indication towards
possible directions for future stream reasoning research. DSMS, CEP and seman-
tic web let users express and use complex notions in queries, such as trends, sky-
lines and aggregations. However, users are demanding for even more sophisticated
features (R9), as discussed in Section 3.1.

Almost every study in stream reasoning addressed the timely fashion require-
ment (R6). It is possible to observe it by considering that time performance is
usually the most relevant axis when performing evaluations. Similarly, the focus
has been on data streams with rich data models. In this sense, the requirement
related to complex domains (R8) has been partially treated. However, we should
consider this requirements in a broader sense. As we explain in Section 3.2 stream
reasoning is expanding by considering (i) more expressive ontological languages
and (ii) non-deductive reasoning approaches.

Velocity and fine-grained access (R2 and R7) have been the two requirements
at the centre of the research so far. Indeed, all studies on stream reasoning so far
addressed the velocity dimension of the problem, considering streaming data the
main object of investigation. In future, as we present in Section 3.3, we expect to
assist to the rise of smart streams that leverage semantics for processing.

February 2017

Volume and variety (R1 and R3) have not been properly addressed, but they
are key requirements to enable stream reasoning in real-world big data environ-
ments. We discuss this in Section 3.4.

Finally, massive data is common, but real-world data is often characterized
also by being imperfect, i.e. incomplete and noisy (R4 and R5). In this direction,
stream reasoning research is still at the starting point. In Section 3.5 we analyze
these research opportunities.

3.1. Towards queries that capture user needs

Queries connect users to stream reasoners: they encode the needs of the former
in a format readable and processable by the latter. Research on query languages
has been one of the leading topics of the stream reasoning trend up to now.
There has been the first wave of languages, e.g. [16,82,25,5], refined and improved
by new proposals to increase the expressiveness and the supported operations,
e.g. [102,57]. In parallel, research has worked on comparing and contrasting such
languages, e.g. [44,33,70,43].

Despite the results obtained so far, the research on query languages for stream
reasoning is far from being complete. In this section, we present three directions
that, in our opinion, are needed to reduce of the distance between stream reasoners
and users (and consequently, real applications).

3.1.1. Capturing a wider set of tasks in queries

So far, language development focused primarily on SPARQL-like queries, where
the main goal is matching of graph patterns over the streaming data under some
entailment regimes. This kind of query sets the basis to filter, aggregate, as well
as detect trends and complex event patterns in the data. However, there are
other important tasks to be performed over streams. One example are spatial
operations, that allow to define geographical and trajectory queries. They have
been largely studied in semantic web as well as in DSMSs and CEPs, e.g. [81,
104,106], but only recently stream reasoning started to move in this direction
(e.g. [88]).

In several domains, there is the need to perform complex analyses of streaming
data that make heavy use of aggregation, correlation functions and arithmetic
operations as well as of inductive methods. Examples of this trend are big data
processors, where solutions such as Apache Spark [131], Apache Flink [28] and
Twitter Heron [80] offer an extensive set of operations, from counting algorithms
up to machine learning methods [94]. Solutions in this direction are starting to
appear, e.g. [75], and we expect a large interest in investigating this area in the
near future.

Analytics provide insights, but users often also want fine grain access to the
information that supports those insights. This calls for optimizing a special type
of continuous queries that include preferences in the information need, e.g. con-
tinuous top-k queries [99]. Some initial works exist on top-k query answering in
SPARQL, but to the best of our knowledge there is only a vision paper [39] that
casts some light in this direction. No one has attempted, yet, to investigate this
area.

February 2017

Moreover, the graph structure of the RDF data model opens the doors to the
application of the classical algorithms related to the graph theory, e.g. path find-
ing, connectivity, bipartiteness and clique search. How to apply such techniques
to graph streams has been studied in the database literature [93].

Whilst there are examples for supporting these kinds of operations on static
data (e.g., [76]), to the best of our knowledge, none of the stream reasoning-related
query languages designed up to now support the above operations. Given the im-
portance these non-deductive techniques have gained over the past few years (just
think about the rise of machine learning), we strongly believe that the next years
will see the addition of new operations and the design of languages that support
them. It may still remain important to offer declarative languages (in addition to
programmable APIs) to describe tasks, since they separate the expected output
(the goal to the computation) from the way it should be computed and may—in
some cases—Dbe easier to handle for domain experts.

8.1.2. Tightening CEP and ontological reasoning

It is worth considering the relation between CEP and DL reasoning. CEP queries
are de-facto production rules: if a set of temporal constraints over events are satis-
fied (condition), then a complex event is triggered (action). That means a system
that involved both CEP rules and DL axioms has two inference components: one
based on CEP rules and another one based on ontological axioms.

This consideration opens the door to several questions, such as: which part of
the knowledge better fits the CEP rules and which one better fits ontology axioms?
We can imagine that while some parts of the knowledge can be modelled as CEP
rules or ontological axioms only, others may be captured by both formalisms. Such
modelling decisions have an impact on the evaluation engine, its performance and
the results it computes.

Another question is: how can the two components be combined? Following
the framework presented in Section 2, the CEP evaluation is on top of the en-
tailment (both window- and stream-level one). A well-marked separation between
the two components is a safeguard with regards to complexity, but may not fit
some applications. For example, a use case may require that the output of CEP
reasoning will result in changes to the ontological entailment, which in turn may
trigger CEP rules. In such cases, the interaction of the two deduction sub-systems
may affect the performance, with the risk to end up in endless processes. One
possible solution to the problem is to identify the conditions under which CEP
rules maintain the decidability of the stream reasoning process, similarly to the
research on DL-safe rules in [98].

8.1.3. Forgetting knowledge

While processing streams, the identification of data that is useful for the current
computation can be problematic. Several solutions have been proposed up to
now, from sliding windows mechanisms DSMSs, to consumption and selection
policies in CEPs. Such methods are key since they allow to discard data and keep
under control the resource usage, and are currently adapted by stream reasoning
solutions, e.g. sliding windows in CQELS and consumption policies in Etalis.

February 2017

However, they may lead to unexpected situations, e.g. a fact may fall out of the
window while it is still relevant in the inference process.

In the context of stream reasoning, there is the opportunity to develop more
sophisticated forgetting mechanisms. The notion of consumption is slightly differ-
ent from the one of expiration [24]: consumed facts are not useful for processing,
whilst expired facts are not true anymore. Incremental reasoning (Section 2.1.2)
relies on the idea that data is removed because it expires. Similarly, initial work on
stream reasoning like IMaRS assumes that consumption and expiration overlaps.
However, this is not always the case: while some input data can be consumed
(e.g. by a sliding window), some derivations may still be useful to solve the task.
It follows that such derived data should not be consumed at the same time. We
need models and techniques to manage consumption and expiration separately.
In this way, the semantics of forgetting data becomes more precise, improving the
quality of the engine answers.

Another approach is to exploit the semantics and knowledge about the data
content to identify the relevant information. Ongoing research in DSMS is study-
ing how to use knowledge about the streaming data to define windows, e.g. ses-
sion windows in Google Dataflow [2] and frames [61]. The idea behind such tech-
niques is to create windows by using specific information in the data (e.g. a session
identifier in a server access log), rather than by using generic information such
as time or number or elements. Moving from DSMS to stream reasoning, TEF-
SPARQL [57] allows users to define facts as time-annotated elements by declaring
a set of conditions on the input stream items. The approach presented in [130]
introduces the notion of semantic importance, as a set of metrics assigned to the
stream items, such as query contribution and provenance. These values lead the
process of deciding which information should be consumed.

3.2. Towards sophisticated stream reasoning

As the stream reasoning name suggests, reasoning plays a crucial role. In this
section, we describe two directions related to this topic. The first is the study of
more expressive formalisms for deductive reasoning, such as temporal logics and,
more in general, alternatives to description logics. The second is the integration
of deductive reasoning with other types of reasoning, such as the inductive one.

8.2.1. Extending the range of logical formalisms

After ten years of stream reasoning investigation, it appears that logical languages
are most popular for stream reasoning. Most of the works reported in this paper
use or slightly extend OWL 2 DL and its fragments.

In the next years, we think it is important to investigate other inference
approaches and how they can be combined with OWL. First steps in this direction
were taken using ASP [48,58]. Important contribution may arise by the study
of temporal logics [9] in the streaming context. The processing of data streams
with Metric Temporal Logic was pioneered in [65] and it is now attracting again
interests [123,27]. However, as already noticed in [37], several other logics also
appear to be valid starting points, e.g. temporal action logic [47], step logic [50],
active logic [49] and event calculus [118].

February 2017

8.2.2. Integrating other types of reasoning

One element usually found in stream reasoning solutions is the presence of a con-
ceptual model, possibly in combination with rich background knowledge. They can
be usually described through an ontological language, which enables the deriva-
tion of implicit information. When queries extend the set of operators as de-
scribed above, an interesting challenge will be to investigate how several reasoning
techniques can coexist.

For example, let’s consider the system that integrates machine learning and
deductive reasoning algorithms described in the end of Section 2.1.3. The authors
of [18] built a system that pipes the results of an RSP engine into a machine
learning system. However, this is just one possibility. The latter may also feed the
former (as in [86]). Moreover, it is possible to exploit more interactive paradigms,
where results of machine learning and reasoning techniques are continuously ex-
changed to achieve a given goal.

In addition to the machine learning mentioned above, we hope to observe an
increasing number of explorations that study how to combine (deductive) stream
reasoning with other techniques, such as probabilistic reasoning, planning, natural
language processing, sentiment analysis.

3.3. Towards semantic streams

One of the ways to introduce semantics is through annotations: they can describe
data in a machine-readable fashion, and can consequently be read and processed
by systems. Even if this is a typical semantic web use case, this direction has been
investigated by few studies so far, e.g. [66,92].

There is a potential value in annotating streams: it enables engines to access
a description of the stream and to use it to take decisions, e.g. dynamic discovery
and selection of data sources.

The stream descriptor can provide quantitative and qualitative information
about the content, e.g. statistical data about frequency and size, information
about the vocabularies adopted in the stream items and provenance. Such infor-
mation may help the stream reasoner in taking some decisions on how to process
the stream, even before starting to receive it, e.g. relevancy of the data w.r.t. the
registered queries, query optimisation or need for data eviction techniques.

The description of the stream may provide knowledge about its content. We
can indeed observe that stream content is heterogeneous in nature. A stream may
bring states (e.g. the temperature in a room), producing data items in a periodic
way (e.g. every 2 seconds) or when the state change (e.g. when the temperature
increases of one degree). Streams may also describe sequences of actions (e.g. the
log of the user interaction in a Web site).

When the query developer aims at describing a task for a stream reasoner,
it is up to him to know what the stream carries and consequently to take proper
decisions. By exploiting annotations about the stream it would be possible to
improve the interoperability at application level: tools may assist the development
of queries over the stream and help domain experts with limited technical skills.
As usual, when talking about vocabularies and annotations, it will be important
to compare the existing proposals as well as the upcoming ones, to find agreements
and to come up with shared standards.

February 2017
3.4. Towards scalable stream reasoners

The progress on stream reasoning foundations sets the basis to build a new gener-
ation of more sophisticated stream reasoning frameworks. Researchers integrate
reasoning processes in a gradual way, from the application of reasoning over the
window content as an ontology, e.g. Streaming Knowledge Bases and Sparkwave,
to more sophisticated solutions that take into account also the time dimension
and the transient nature of the data stream items in the reasoning process, e.g.
ExaStream. In the following, we will present the main challenges that stream
reasoner researchers and engineers are going to cope with in order to build new
engines.

Scalability is an open and exciting challenge: which order of throughput will
stream reasoners be able to support?

As known, there are theoretical results that set some constraints to the ve-
locity that stream reasoners may reach. Reasoning computational complexity is
strictly related to the adopted ontological language: the query answering task of
the three OWL 2 dialects can vary from AC? and polynomial (w.r.t. ABox size)
up to NP and EXP (w.r.t. ABox, TBox and query sizes). In this sense, it is not
possible to expect that a stream reasoner is going to reach the performance of
DSMS and CEP solutions.

However, here we observe a trade-off similar to the one between memory size
and access time in computer systems, which is solved using a memory hierarchy.
As proposed in [120], a hierarchy of processing steps of increasing complexity can
tackle scalability. Technically, this is doable because reasoning can speed up by
pushing down processing steps in the hierarchy (e.g., query rewriting) and by
post-processing the results coming up from the layer underneath.

8.4.1. Approximating the results

A typical approach to scale DSMS and CEP systems is to move from complete
and exact outputs to approximated ones. Such answers are acceptable in a wide
range of scenarios, in particular when tasks require aggregations and small errors
are tolerable, e.g. counting the number of people entering a square or calculating
the average temperature in a building.

There are several ways to achieve approximation. Load shedding [122] tech-
niques capture the idea that the system can produce the output by processing
a portion of the stream and throwing away the remaining part. Over the years,
several load shedding techniques have been proposed, to select (with the minimal
effort) the data to be evicted to minimise the error of the answer. [56,23] introduce
data eviction in stream reasoning. The main difference of applying load shed-
ding in stream reasoning is the more complex nature of the data items and the
reasoning process itself. Removing data in aggregation operations can introduce
errors that can be estimated and controlled. In stream reasoning, the eviction of
a single fact may drastically affect the inference process, with high impact on the
correctness of the answer.

Besides data eviction, that discards data before processing it, summarization
exploits the idea that output can be computed starting with a summary of the in-
put data rather than from the whole dataset. DSMS, CEP and DL reasoning have

February 2017

extensively used these techniques. Summaries in DSMS and CEP, also named
sketches, are used to reduce the memory consumption of the engine and to ap-
proximate results of aggregations [46]. Several sketch methods are available, usu-
ally tailored to specific kinds of aggregation query, e.g. [29]. In the DL-reasoning
context, summaries follow a similar idea [53,132]: the ontology (or part of it)
is transformed in a smaller representation, over which it is possible to perform
reasoning tasks.

While the above approaches focus on data, other techniques work to simplify
the processing, gaining in performance while introducing some degree of approx-
imation. An example is [103]: authors propose methods to reason over ontolo-
gies represented in OWL 2 DL through inference processes of OWL 2 EL, i.e. a
tractable fragment of OWL 2 DL. Axioms that cannot be treated in OWL 2 EL
(e.g. inverse properties) are managed through ad-hoc rules, applied before and
after the reasoning process. In this way, it is usually possible to apply faster algo-
rithms to perform the reasoning task, moving from a situation of certain answer
to approximated ones (under some correctness constraints).

8.4.2. Parallelizing and distributing the stream reasoners

Parallelization and distribution can be seen as an opportunity or as a challenge.
So far stream reasoning was addressed bringing data streams and contextual (or
background) knowledge in one single point. If this point is a cluster, paralleliza-
tion and distribution (in the cluster) is an approach to engineer scalable and
elastic stream reasoners. The first part of this section discusses this opportunity.
However, data streams are parallel and distributed sources in nature. The same
applies to many Web data sources to join data streams with. Pushing computa-
tion to those sources (see also Fog Computing as a broader research field) is the
challenge presented in the second half of this section.

When talking about parallelization and distribution, the intuitive idea is that
the processing can be split and executed at the same time in multiple locations,
e.g. multiple processors in a machine or different nodes in a cluster or a cloud
platform.

Looking at stream reasoning, we can find only some attempts in this direction,
such as However, in adjacent areas several investigations are available: in stream
processing, e.g. [1,78], in big data processing, e.g. [131,28,80], and in SPARQL
query evaluation, e.g. [62,107,116].

Engineering a distributed stream reasoner is a challenging task that touches
several scientific and technical problems. Ideally, such a system should maximise
the throughput, finding a perfect balance between network load (i.e. how data
route through the nodes) and machine load (i.e. the computation loads assigned to
the nodes). It is, therefore, important to understand which are the best topologies,
operators and data distributions to perform the stream reasoning task.

One initial study in this direction is [52]: authors propose to apply graph par-
titioning over linked data streams in the context of continuous query answering.
The goal is to reduce the network load and consequently improve the performance
of the system. Further work is needed to understand the problem of how to cope
with the presence of inference processes in the context of reasoning.

February 2017

Several contributions are available on parallel and distributed reasoning in
non-streaming settings. One possible way to achieve this is to treat the data as
a set of interconnected ontologies: first reasoning over each ontology is locally
performed and the inference completes by exchanging messages, e.g. [117,15].
More recent work exploits new parallelization paradigms to perform the reasoning
process, e.g. [126,96]. The usual problems of distributed reasoners are related to
termination, i.e. decide when nodes can stop the computation, and to duplicates,
i.e. the less duplicated derivations, the higher the performance. The problem in
stream reasoning is exacerbated by the need to provide reactive answers.

The last direction we highlight is related to the data distribution problem.
When considering scenarios like the Web, it often happens that the data is dis-
tributed, controlled by several actors and exposed through services, e.g. SPARQL
endpoints or Web APIs, working with either pull or push mechanisms. In such
contexts, it often happens that data cannot be centralised and permanently stored
in local memory of the stream engine. For example, data cannot fit in the engine
memory, it may change over time (and services may not publish notifications),
or can be only stored for limited amounts of time for legal reasons. This setting
poses interesting challenges to stream reasoning, where responsiveness is one of
the most critical requirements. One of the possible ways to see the problem is the
following: given the data that can be pushed to the processor, which is the needed
contextual remote data to be pulled to solve the given task? In other words, the
challenge is how to achieve the integration of the local and remote data without
losing responsiveness. The initial effort [35,55] works in the setting of linked data
integration of streaming and contextual data for query evaluation purposes. The
idea is to adopt caches where to store a portion of the remote data, updating it
depending on the recent stream content. Another relevant work is the one in [69],
where the authors study the problem of integrating distributed dynamic data and
process it through a set of rules. Further techniques are required, since moving
and replicating data in the processing nodes impacts the performance.

3.4.3. Reasoning outside the window

The stream-level entailment offers an additional opportunity for stream reasoning.
The main challenge is on the resource usage. Given the absence of a sliding win-
dow, which introduces a consumption mechanism for the formula validities, a rea-
soner operating under stream-level entailment may require an unrealistic amount
of memory and processing capabilities. In other words, is it possible to build a
generic framework to perform stream reasoning under stream-level entailment?
Under which conditions would it work without exceeding the assigned amount of
resources? Neither LARS nor EP-SPARQL, described in Section 2.3, is targeting
such problems. LARS allows defining formulas over the whole stream without
limiting the reasoning effect to the window content. However, it is a theoretical
framework and no implementations are available at the moment.

Looking at the problem from a database perspective, we can observe that a
DSMS can compute the average of those numbers incrementally with finite mem-
ory. This relates to the database notion of non-blocking operators. Our intuition
is that reasoning outside the window is feasible for non-blocking reasoning tasks.
For instance, it is possible to compute the materialisation of a stream under the

February 2017

DL-fragment of RDFS when the TBox is fixed. The inference can be applied to
each stream item independently, avoiding the storage of streaming data to com-
pute future derivations. That is the case of EP-SPARQL and Etalis: given a fixed
schema, all the inference rules are triggered by one data item. In other words,
the reasoning process does not need to access the past to compute new deriva-
tions. Etalis can still have problems with the memory management: the registered
queries may require an infinite amount of memory to compute all the solutions.
However, this is a problem related to the CEP-nature of the system rather than
to the reasoning one. Researchers investigating online monitoring (i.e. the assess-
ment of a temporal logic formula w.r.t. a stream) are developing solid foundations
on this topic. In 2013, [21] introduces the notion of trace-length independence,
to indicate monitors able to operate with space resources independent from the
number of stream events. Recently, [20] refined the trace-length independence
by proposing the notion of event-rate independence, to indicate monitors able to
work with an amount of space independent from the number of events in a time
unit.

Building systems that perform window-level entailment requires coping with
the problem of introducing controls on the resource usage, in particularly on
the memory usage. A task can be usually modelled through a conceptual model,
one or more data streams and a set of operations (represented by a query). We
hypothesise the existence of a class of queries that guarantee an upper bound
on resource usages, given an underlying logical language. EP-SPARQL supplies
evidence about this since, as explained above, it is possible to execute its query
with a limited amount of memory usage.

Answers to the above question can enable the constructions of new algorithms
to perform stream- and window-level entailment, able to analyse the current sce-
nario and decide which strategy to adopt to execute the query in a safe way
avoiding to exceed the assigned resources. For example, a system may decide to
compute the correct answer when the conditions allow it, and move to approx-
imated results in the other cases, by adopting item consumption and summary
techniques.

3.5. Towards robustness to imperfect data

The road to the usage of stream reasoning in real environments goes through
the ability to process imperfect data, that can be either noisy or incomplete.
Deductive reasoning is sensible to noise and incomplete data: one single error
may lead a system to an overall inconsistent state. In this section, we discuss the
open problems related to stream reasoning with imperfect data, analyzing first
the ones related to heterogeneity and then the ones related to noise.

8.5.1. Overcoming the heterogeneity

As we depicted above, reasoning offers a set of methods and solutions to cope
with the heterogeneity. In particular, such techniques focus on the problem of
heterogeneity at schema-level: when models are different, OBDA is a solution
to access such data through a conceptual shared model. For example, [34,66]
propose to annotate the streams through an ontology, and to reason about those

February 2017

metadata to retrieve and integrate the streaming data needed for the processing.
Tackling this problem is important, but heterogeneity issues affect the stream
reasoning scenario in other ways.

Data streams can be heterogeneous because they are not synchronised. For in-
stance, imagine two cameras monitoring the same street that report every minute
the number of cars they counted. They report the same number only if they are
in sync. If one camera starts the counting 20 seconds before the other one, the
two counting will differ, but this second situation is normal in an open world.
Similarly, a continuous query may require to join a data stream with background
knowledge served by a pull API, e.g. to monitor the changes in the number of
followers the users mentioned in a stream of microposts, because user profiles
normally are only available via pull API. There is no guarantee that the API is
returning values that are temporally aligned with the data stream. The solution
of this problem requires both a rich semantic description of the data streams
(see Section 3.3) and an extension of stream reasoning methods. A possible re-
search direction is to offer a synchronisation service to be used to perform the
stream reasoning tasks. [64] proposes to define synchronization policies, built on
the top of a notion of state, to perform the streams alignment is these kind of
services. Such services may also offer the opportunity to homogenise access to
stored time-series and continuously computed predictions.

Another service that such a layer can provide is the on demand discretisation
abstraction of quantities as facts. For instance, a stream reasoner may prefer the
cameras of the example above to report the level of congestion in the street rather
than the counting. However, different applications (or even the same application
in different moments) may require different discretisations. A first step in this
direction is reported in [125], where the authors report on a system able to an-
swer continuous queries over data stream applying a rewriting method for query
answering over temporal fuzzy DL-Lite ontologies.

Finally, heterogeneity can go beyond the data and affect the stream reasoner
as well. Existing stream reasoning techniques differ from each other. It is evident
when the goal is different, but it happens even when they perform the same task
and user may expect the same output. There is an ongoing effort on studying
heterogeneity in stream reasoners. RSEP-QL [44,43] is a reference model to ex-
plain heterogeneity in stream reasoners under simple entailment, while LARS [33]
has been introduced to capture the behaviour of stream reasoners under more
complex regimes. Studying and understanding heterogeneity of stream reasoners
is important to achieve interoperability, standardization and comparison.

8.5.2. Coping with noise

DSMS and CEP have always coped with noise [31]. We can distinguish two dif-
ferent types of noise, given that the streaming item is composed of some content
and a time annotation.

The first one affects the stream item content. Sensors may break and stop to
work. Or worse, they may degrade their precision and provide observations with
some degree of error, leading the processing to wrong results. The problem is not
limited to the sensor-generated data: streams generated from human interactions
may contain syntactical or semantical errors in the data items. In a stream rea-

February 2017

soning scenario, this may lead to wrong conclusions and consequently to wrong
decisions and actions.

When the stream has a very simple schema (e.g. a time series), statistical
methods can supply solutions to manage the noise. However, when we consider
more complex schemata, more sophisticated methods may be required. Recently,
techniques to cope with noise in stream reasoning emerged, e.g. [84]. The idea is
to adopt machine learning to process noisy data and to learn models over which
to apply deductive reasoning processes. Inductive reasoning is a powerful tool
to cope with noise, but there are other solutions to explore in the next years.
Looking at deductive reasoning techniques, inconsistency repair [8,87] and belief
revision [113,111] offer solid foundations to build framework to identify noise and
to decide the proper actions to be taken. The challenge for researchers is to find
algorithms able to use them in the context of stream processing.

The other kind of noise is the one that affects the temporal annotations on
the data item. When considering a single stream, the noise manifests in the out-
of-order phenomena: for some reasons (e.g. during stream production or trans-
mission), the stream engine is receiving stream items in a wrong order. However,
the problem may become more complicated when considering multiple streams.
Different sources are producing and publishing them, and this can lead to the in-
troduction of noise, since they may adopt different, not perfectly aligned clocks to
generate the temporal annotations. Moreover, one stream can be received sensibly
before another one, since the transmission time between two points of a network
can require different time.

Several solutions have been proposed to cope with noise in time in the context
of stream and event processing, e.g. [119,89], and stream reasoning can get an
advantage of such techniques as well. However, we believe that semantics can
offer the opportunity to enhance the existing methods to manage such problems.
Engines can use the rich and machine-readable descriptions of the data streams to
monitor if the received data stream has the correct order. When not, the system
would be aware of issues in the stream, with the possibility to take actions.

4. Conclusions

We are observing an impressive increase of the speed of data production and
consumption. In this paper, we explained how stream reasoning aims at providing
methods and tools to perform sophisticated analyses of such data.

In the beginning, stream reasoning grew with the idea of building such anal-
yses on top of logical and deductive inference. DSMS, CEP and SemWeb of-
fered solid starting points to kick off the research. Through the years, we have
observed the creation of languages, techniques and frameworks. Those studies
pushed stream reasoning in a broader area, introducing reasoning techniques be-
yond the deductive ones. Semantic Scholar and Google Scholar count more than
a 1000 articles containing ”stream reasoning”®, published in different areas, from
semantic web to artificial intelligence. However, there is still a lot of research to
be done.

6Checked at February 2017

February 2017

In Section 3, we presented the main directions over which stream reasoning
research can continue. Stream reasoners should offer richer query languages, which
include a wider set of operators to encode user needs, and the engine to evaluate
them. Reasoning took a more generic connotation, and now it includes inductive
reasoning techniques in addition to deductive ones. This trend will grow, combin-
ing different techniques to overcome their respective limits. Solutions need to be
engineered in scalable frameworks, i.e., they must be able to integrate and reason
over huge amounts of heterogeneous data while guaranteeing time requirements.
And it will be important to fill the gaps between theoretical models and reality,
making stream reasoning solutions robust and able to cope with issues such as
noise and heterogeneity. In parallel, it will be important to identify real prob-
lems and scenarios where stream reasoning may be a solution. Internet of Things
and Industry 4.0 are examples of areas where to apply stream reasoning results.
Moreover, it is necessary to develop benchmarking and evaluation activities, to
compare and contrast the current solutions.

Results obtained up to now are important. In addition to the publications,
some of the mature solutions were exploited in real scenarios, such as social media
analytics and turbine monitoring. We should get inspired by such results, and
see them as the foundations to build new research and to reach new ambitious
achievements, to reach the goal of:

making sense in real time of multiple, heterogeneous, gigantic and inevitably
noisy and incomplete data streams in order to support the decision process of
extremely large numbers of concurrent users [36].

References

[1] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J. Hwang, W. Lind-
ner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdonik. The design
of the borealis stream processing engine. In CIDR, pages 277-289, 2005.

[2] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Ferndndez-Moctezuma, R. Lax,
S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. The dataflow model: A prac-
tical approach to balancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. PVLDB, 8(12):1792-1803, 2015.

[3] M. I. Ali, F. Gao, and A. Mileo. Citybench: A configurable benchmark to evaluate
RSP engines using smart city datasets. In International Semantic Web Conference (2),
volume 9367 of Lecture Notes in Computer Science, pages 374-389. Springer, 2015.

[4] M. I. Ali, F. Gao, and A. Mileo. Citybench: A configurable benchmark to evaluate
RSP engines using smart city datasets. In International Semantic Web Conference (2),
volume 9367 of Lecture Notes in Computer Science, pages 374—389. Springer, 2015.

[5] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified language for
event processing and stream reasoning. In WWW, pages 635-644. ACM, 2011.

[6] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream reasoning and complex event
processing in ETALIS. Semantic Web, 3(4):397-407, 2012.

[7] A. Arasu, S. Babu, and J. Widom. CQL: A language for continuous queries over streams
and relations. In DBPL, volume 2921 of Lecture Notes in Computer Science, pages 1-19.
Springer, 2003.

[8] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in inconsistent
databases. In PODS, pages 68-79. ACM Press, 1999.

[9] A. Artale and E. Franconi. A survey of temporal extensions of description logics. Ann.
Math. Artif. Intell., 30(1-4):171-210, 2000.

February 2017

(10]
(11]
(12]

(13]

14]
(15]

(16]

(17]

(18]

(19]

20]

(21]
(22]

(23]

[24]

(25]

[26]

27]

(28]

(29]
(30]

(31]

F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In IJCAI, pages 364-369.
Professional Book Center, 2005.

F. Baader, C. Lutz, and S. Brandt. Pushing the EL envelope further. In OWLED
(Spring), volume 496 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

A. Bachmann, C. Bird, F. Rahman, P. T. Devanbu, and A. Bernstein. The missing links:
bugs and bug-fix commits. In SIGSOFT FSE, pages 97-106. ACM, 2010.

M. Balduini, I. Celino, D. Dell’Aglio, E. Della Valle, Y. Huang, T. K. Lee, S. Kim, and
V. Tresp. Reality mining on micropost streams - deductive and inductive reasoning for
personalized and location-based recommendations. Semantic Web, 5(5):341-356, 2014.
M. Balduini, E. D. Valle, M. Azzi, R. Larcher, F. Antonelli, and P. Ciuccarelli. Citysens-
ing: Fusing city data for visual storytelling. IEEE MultiMedia, 22(3):44-53, 2015.

J. Bao, D. Caragea, and V. Honavar. A tableau-based federated reasoning algorithm for
modular ontologies. In Web Intelligence, pages 404-410. IEEE Computer Society, 2006.
D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-SPARQL: a
continuous query language for RDF data streams. Int. J. Semantic Computing, 4(1):3—
25, 2010.

D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. Incremental
reasoning on streams and rich background knowledge. In ESWC (1), volume 6088 of
Lecture Notes in Computer Science, pages 1-15. Springer, 2010.

D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, Y. Huang, V. Tresp, A. Rettinger,
and H. Wermser. Deductive and inductive stream reasoning for semantic social media
analytics. IEEFE Intelligent Systems, 25(6):32—41, 2010.

D. F. Barbieri and E. Della Valle. A proposal for publishing data streams as linked data
- A position paper. In LDOW, volume 628 of CEUR Workshop Proceedings. CEUR-
WS.org, 2010.

D. A. Basin, B. N. Bhatt, and D. Traytel. Almost Event-Rate Independent Monitoring
of Metric Temporal Logic. In TACAS (2), volume 10206 of Lecture Notes in Computer
Science, pages 94-112, 2017.

A. Bauer, J.-C. Kster, and G. Vegliach. From Propositional to First-Order Monitoring.
In RV, volume 8174 of Lecture Notes in Computer Science, pages 59—75. Springer, 2013.
H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. LARS: A logic-based framework for
analyzing reasoning over streams. In AAAI pages 1431-1438. AAAI Press, 2015.

F. Belghaouti, A. Bouzeghoub, Z. Kazi-Aoul, and R. Chiky. POL: A pattern oriented
load-shedding for semantic data stream processing. In WISE (2), volume 10042 of Lecture
Notes in Computer Science, pages 157-171, 2016.

I. Botan, G. Alonso, P. M. Fischer, D. Kossmann, and N. Tatbul. Flexible and scalable
storage management for data-intensive stream processing. In EDBT, volume 360 of ACM
International Conference Proceeding Series, pages 934-945. ACM, 2009.

J. Calbimonte, H. Jeung, 0. Corcho, and K. Aberer. Enabling query technologies for the
semantic sensor web. Int. J. Semantic Web Inf. Syst., 8(1):43—-63, 2012.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro,
R. Rosati, M. Ruzzi, and D. F. Savo. The MASTRO system for ontology-based data
access. Semantic Web, 2(1):43-53, 2011.

D. Calvanese, E. G. Kalayci, V. Ryzhikov, and G. Xiao. Towards practical OBDA with
temporal ontologies - (position paper). In RR, volume 9898 of Lecture Notes in Computer
Science, pages 18—24. Springer, 2016.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache
flinkT™: Stream and batch processing in a single engine. IEEE Data Eng. Bull., 38(4):28—
38, 2015.

G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. J. Algorithms, 55(1):58-75, 2005.

G. Cugola and A. Margara. Processing flows of information: From data stream to complex
event processing. ACM Comput. Surv., 44(3):15:1-15:62, 2012.

G. Cugola, A. Margara, M. Matteucci, and G. Tamburrelli. Introducing uncertainty in
complex event processing: model, implementation, and validation. Computing, 97(2):103—
144, 2015.

February 2017

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]
[41]

(42]

[43]

44]

[45]

[46]
(47]

(48]

[49]
[50]

[51]

[52]

(53]

R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 Concepts and Abstract Syntax. W3c
Recommendation, W3C, 2014.

M. Dao-Tran, H. Beck, and T. Eiter. Contrasting RDF stream processing semantics.
In JIST, volume 9544 of Lecture Notes in Computer Science, pages 289-298. Springer,
2015.

D. de Leng and F. Heintz. Ontology-Based Introspection in Support of Stream Reasoning.
In SCAI, volume 278 of Frontiers in Artificial Intelligence and Applications, pages 78-87.
IOS Press, 2015.

S. Dehghanzadeh, D. Dell’Aglio, S. Gao, E. Della Valle, A. Mileo, and A. Bernstein.
Approximate continuous query answering over streams and dynamic linked data sets. In
ICWE, volume 9114 of Lecture Notes in Computer Science, pages 307-325. Springer,
2015.

E. Della Valle. On Stream Reasoning. PhD thesis, Vrije Universiteit Amsterdam, 9 2015.
Available online at http://dare.ubvu.vu.nl/handle/1871/53293.

E. Della Valle, S. Ceri, F. van Harmelen, and D. Fensel. It’s a streaming world! reasoning
upon rapidly changing information. IEEE Intelligent Systems, 24(6):83-89, 2009.

E. Della Valle, D. Dell’Aglio, and A. Margara. Taming velocity and variety simultaneously
in big data with stream reasoning: tutorial. In DEBS, pages 394-401. ACM, 2016.

E. Della Valle, S. Schlobach, M. Krotzsch, A. Bozzon, S. Ceri, and I. Horrocks. Order
matters! harnessing a world of orderings for reasoning over massive data. Semantic Web,
4(2):219-231, 2013.

D. Dell’Aglio. On Unified Stream Reasoning. PhD thesis, Politecnico di Milano, 2016.
D. Dell’Aglio, M. Balduini, and E. Della Valle. Applying semantic interoperability prin-
ciples to data stream management. In Data Management in Pervasive Systems, Data-
Centric Systems and Applications, pages 135-166. Springer, 2015.

D. Dell’Aglio, J. Calbimonte, M. Balduini, O. Corcho, and E. D. Valle. On correctness in
RDF stream processor benchmarking. In International Semantic Web Conference (2),
volume 8219 of Lecture Notes in Computer Science, pages 326-342. Springer, 2013.

D. Dell’Aglio, M. Dao-Tran, J. Calbimonte, D. Le Phuoc, and E. Della Valle. A query
model to capture event pattern matching in RDF stream processing query languages. In
EKAW, volume 10024 of Lecture Notes in Computer Science, pages 145-162, 2016.

D. Dell’Aglio, E. Della Valle, J. Calbimonte, and O. Corcho. RSP-QL semantics: A
unifying query model to explain heterogeneity of RDF stream processing systems. Int.
J. Semantic Web Inf. Syst., 10(4):17-44, 2014.

C. Dobbins, P. Fergus, M. Merabti, and D. Llewellyn-Jones. Monitoring and measuring
sedentary behaviour with the aid of human digital memories. In CCNC, pages 395-398.
IEEE, 2012.

A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Rastogi. Processing complex aggregate
queries over data streams. In SIGMOD Conference, pages 61-72. ACM, 2002.

P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnstrém. TAL: temporal action logics
language specification and tutorial. Electron. Trans. Artif. Intell., 2:273-306, 1998.

T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer
set programming with description logics for the semantic web. Artif. Intell., 172(12-
13):1495-1539, 2008.

J. Elgot-Drapkin, S. Kraus, M. Miller, M. Nirkhe, and D. Perlis. Active logics: A unified
formal approach to episodic reasoning. Technical report, 1999.

J. J. Elgot-Drapkin. Step-logic: Reasoning situated in time. PhD thesis, University of
Maryland at College Park, 1988.

O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat-Pérez, M. Pham,
and P. A. Boncz. The LDBC social network benchmark: Interactive workload. In SIG-
MOD Conference, pages 619-630. ACM, 2015.

L. Fischer, T. Scharrenbach, and A. Bernstein. Scalable linked data stream processing via
network-aware workload scheduling. In SSWS@ISWC, volume 1046 of CEUR Workshop
Proceedings, pages 81-96. CEUR-WS.org, 2013.

A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg, and K. Srinivas. The summary abox:
Cutting ontologies down to size. In International Semantic Web Conference, volume

February 2017

[54]

(55]

[56]

[57]

(58]
[59]
[60]
[61]

(62]

[63]
[64]
[65]
[66]

(67]

(68]

(69]

[70]

[71]

[72]

73]

4273 of Lecture Notes in Computer Science, pages 343—-356. Springer, 2006.

C. Forgy. Rete: A fast algorithm for the many patterns/many objects match problem.
Artif. Intell., 19(1):17-37, 1982.

S. Gao, D. Dell’Aglio, S. Dehghanzadeh, A. Bernstein, E. Della Valle, and A. Mileo.
Planning ahead: Stream-driven linked-data access under update-budget constraints. In
International Semantic Web Conference (1), volume 9981 of Lecture Notes in Computer
Science, pages 252—-270, 2016.

S. Gao, T. Scharrenbach, and A. Bernstein. The CLOCK data-aware eviction approach:
Towards processing linked data streams with limited resources. In ESWC, volume 8465
of Lecture Notes in Computer Science, pages 6-20. Springer, 2014.

S. Gao, T. Scharrenbach, J. Kietz, and A. Bernstein. Running out of bindings? integrating
facts and events in linked data stream processing. In SSN-TC/OrdRing@ISWC, volume
1488 of CEUR Workshop Proceedings, pages 63-74. CEUR-WS.org, 2015.

M. Gebser, O. Sabuncu, and T. Schaub. An incremental answer set programming based
system for finite model computation. AI Commun., 24(2):195-212, 2011.

B. Glimm and C. Ogbuji. SPARQL 1.1 Entailment Regimes. W3c Recommendation,
W3C, 2013.

J. Gray, editor. The Benchmark Handbook for Database and Transaction Systems (2nd
Edition). Morgan Kaufmann, 1993.

M. Grossniklaus, D. Maier, J. Miller, S. Moorthy, and K. Tufte. Frames: data-driven
windows. In DEBS, pages 13-24. ACM, 2016.

S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. Triad: a distributed shared-
nothing RDF engine based on asynchronous message passing. In SIGMOD Conference,
pages 289-300. ACM, 2014.

S. Harris and A. Seaborne. SPARQL 1.1 Query Language. W3c Recommendation, W3C,
2013.

F. Heintz. DyKnow : A Stream-Based Knowledge Processing Middleware Framework.
PhD thesis, Linkping University, Sweden, 2009.

F. Heintz and P. Doherty. Dyknow: An approach to middleware for knowledge processing.
Journal of Intelligent and Fuzzy Systems, 15(1):3—-13, 2004.

F. Heintz and D. d. Leng. Semantic information integration with transformations for
stream reasoning. In FUSION, pages 445-452. IEEE, 2013.

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The hibench benchmark suite:
Characterization of the mapreduce-based data analysis. In Data Engineering Workshops
(ICDEW), 2010 IEEE 26th International Conference on, pages 41-51. IEEE, 2010.

Z. Huang and H. Stuckenschmidt. Reasoning with multi-version ontologies: A temporal
logic approach. In International Semantic Web Conference, volume 3729 of Lecture
Notes in Computer Science, pages 398-412. Springer, 2005.

T. Kéfer, A. Harth, and S. Mamessier. Towards declarative programming and querying
in a distributed cyber-physical system: The i-vision case. In CPS Data, pages 1-6. IEEE,
2016.

R. Keskisdarkkd. Query templates for RDF stream processing. In SR+SWIT@QISWC,
volume 1783 of CEUR Workshop Proceedings, pages 25-36. CEUR-WS.org, 2016.

R. Keskisarkkd and E. Blomqvist. Semantic complex event processing for social me-
dia monitoring-a survey. In Proceedings of Social Media and Linked Data for Emer-
gency Response (SMILE) Co-located with the 10th Extended Semantic Web Conference,
Montpellier, France. CEUR workshop proceedings (May 2013), 2013.

E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, S. Lamparter, C. Neuenstadt, O. L.
Ozgep, C. Pinkel, A. Soylu, D. Zheleznyakov, M. Roshchin, S. Watson, and 1. Horrocks.
Semantic access to siemens streaming data: the optique way. In International Semantic
Web Conference (Posters & Demos), volume 1486 of CEUR Workshop Proceedings.
CEUR-WS.org, 2015.

E. Kharlamov, S. Brandt, E. Jiménez-Ruiz, Y. Kotidis, S. Lamparter, T. Mailis,
C. Neuenstadt, O. L. Ozgep, C. Pinkel, C. Svingos, D. Zheleznyakov, I. Horrocks, Y. E.
Ioannidis, and R. Moller. Ontology-based integration of streaming and static relational
data with optique. In SIGMOD Conference, pages 2109-2112. ACM, 2016.

February 2017

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]
(84]
(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

E. Kharlamov, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie, C. Pinkel, M. Rezk, M. G.
Skjeeveland, E. Thorstensen, G. Xiao, D. Zheleznyakov, and 1. Horrocks. Ontology based
access to exploration data at statoil. In International Semantic Web Conference (2),
volume 9367 of Lecture Notes in Computer Science, pages 93—-112. Springer, 2015.

E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Nikolaou, O. L. Ozcep, C. Svin-
gos, D. Zheleznyakov, S. Brandt, I. Horrocks, Y. E. Ioannidis, S. Lamparter, and
R. Moller. Towards analytics aware ontology based access to static and streaming data. In
International Semantic Web Conference (2), volume 9982 of Lecture Notes in Computer
Science, pages 344-362, 2016.

C. Kiefer, A. Bernstein, and A. Locher. Adding data mining support to SPARQL via
statistical relational learning methods. In ESWC, volume 5021 of Lecture Notes in
Computer Science, pages 478-492. Springer, 2008.

M. Kolchin, P. Wetz, E. Kiesling, and A. M. Tjoa. Yabench: A comprehensive framework
for RDF stream processor correctness and performance assessment. In ICWE, volume
9671 of Lecture Notes in Computer Science, pages 280-298. Springer, 2016.

A. Koliousis, M. Weidlich, R. C. Fernandez, A. L. Wolf, P. Costa, and P. R. Pietzuch.
SABER: window-based hybrid stream processing for heterogeneous architectures. In
SIGMOD Conference, pages 555-569. ACM, 2016.

S. Komazec, D. Cerri, and D. Fensel. Sparkwave: continuous schema-enhanced pattern
matching over RDF data streams. In DEBS, pages 58-68. ACM, 2012.

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel, K. Ra-
masamy, and S. Taneja. Twitter heron: Stream processing at scale. In SIGMOD Con-
ference, pages 239-250. ACM, 2015.

K. Kyzirakos, M. Karpathiotakis, K. Bereta, G. Garbis, C. Nikolaou, P. Smeros, S. Gi-
annakopoulou, K. Dogani, and M. Koubarakis. The spatiotemporal RDF store strabon.
In SSTD, volume 8098 of Lecture Notes in Computer Science, pages 496-500. Springer,
2013.

D. Le Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and adaptive
approach for unified processing of linked streams and linked data. In International
Semantic Web Conference (1), volume 7031 of Lecture Notes in Computer Science, pages
370-388. Springer, 2011.

F. Lécué. Diagnosing changes in an ontology stream: A DL reasoning approach. In
AAAIL AAAI Press, 2012.

F. Lécué. Towards scalable exploration of diagnoses in an ontology stream. In AAAI
pages 87-93. AAAI Press, 2014.

F. Lécué and J. Z. Pan. Predicting knowledge in an ontology stream. In IJCAI, pages
2662-2669. IJCAI/AAAI, 2013.

F. Lécué, S. Tallevi-Diotallevi, J. Hayes, R. Tucker, V. Bicer, M. L. Sbodio, and P. Tom-
masi. Smart traffic analytics in the semantic web with STAR-CITY: scenarios, system
and lessons learned in dublin city. J. Web Sem., 27:26-33, 2014.

D. Lembo and M. Ruzzi. Consistent query answering over description logic ontologies.
In Description Logics, volume 250. CEUR-WS.org, 2007.

D. d. Leng and F. Heintz. Qualitative Spatio-Temporal Stream Reasoning with Unob-
servable Intertemporal Spatial Relations Using Landmarks. In AAAI pages 957-963.
AAALI Press, 2016.

M. Liu, M. Li, D. Golovnya, E. A. Rundensteiner, and K. T. Claypool. Sequence pat-
tern query processing over out-of-order event streams. In ICDE, pages 784-795. IEEE
Computer Society, 2009.

D. Luckham. The power of events: An introduction to complex event processing in
distributed enterprise systems. In RuleML, volume 5321 of Lecture Notes in Computer
Science, page 3. Springer, 2008.

A. Margara, J. Urbani, F. van Harmelen, and H. E. Bal. Streaming the web: Reasoning
over dynamic data. J. Web Sem., 25:24-44, 2014.

A. Mauri, J.-P. Calbimonte, D. Dell’Aglio, M. Balduini, M. Brambilla, E. Della Valle, and
K. Aberer. TripleWave: Spreading RDF Streams on the Web. In International Semantic
Web Conference (2), volume 9982 of Lecture Notes in Computer Science, pages 140-149.

February 2017

(93]
[94]

[95]

[96]

[97]

(98]
[99]
[100]

[101]

[102]

[103]
[104]

[105]

[106]

[107]

[108]

[109]

[110]
[111]
[112]
[113]

[114]

Springer, 2016.

A. McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9-20, 2014.
X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. B. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia,
and A. Talwalkar. Mllib: Machine learning in apache spark. CoRR, abs/1505.06807,
2015.

A. Mileo, A. Abdelrahman, S. Policarpio, and M. Hauswirth. Streamrule: A nonmono-
tonic stream reasoning system for the semantic web. In RR, volume 7994 of Lecture
Notes in Computer Science, pages 247—252. Springer, 2013.

B. Motik, Y. Nenov, R. Piro, I. Horrocks, and D. Olteanu. Parallel materialisation of
datalog programs in centralised, main-memory RDF systems. In AAAI pages 129-137.
AAALI Press, 2014.

B. Motik, Y. Nenov, R. E. F. Piro, and I. Horrocks. Incremental update of datalog
materialisation: the backward/forward algorithm. In AAAI pages 1560-1568. AAAI
Press, 2015.

B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. J. Web
Sem., 3(1):41-60, 2005.

K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring of top-k queries over
sliding windows. In SIGMOD Conference, pages 635-646. ACM, 2006.

S. Munoz, J. Pérez, and C. Gutierrez. Simple and efficient minimal RDFS. J. Web Sem.,
7(3):220-234, 2009.

Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu, and J. Banerjee. Rdfox: A highly-
scalable RDF store. In International Semantic Web Conference (2), volume 9367 of
Lecture Notes in Computer Science, pages 3—20. Springer, 2015.

O. L. ézgep7 R. Moller, and C. Neuenstadt. A stream-temporal query language for
ontology based data access. In Description Logics, volume 1193 of CEUR Workshop
Proceedings, pages 696-708. CEUR-WS.org, 2014.

J. Z. Pan, Y. Ren, and Y. Zhao. Tractable approximate deduction for OWL. Artif.
Intell., 235:95-155, 2016.

M. Perry and J. Herring. OGC GeoSPARQL - A Geographic Query Language for RDF
Data. Technical report, Open Geospatial Consortium, 2012.

D. L. Phuoc, M. Dao-Tran, M. Pham, P. A. Boncz, T. Eiter, and M. Fink. Linked stream
data processing engines: Facts and figures. In International Semantic Web Conference
(2), volume 7650 of Lecture Notes in Computer Science, pages 300-312. Springer, 2012.
M. Potamias, K. Patroumpas, and T. K. Sellis. Sampling trajectory streams with spa-
tiotemporal criteria. In SSDBM, pages 275-284. IEEE Computer Society, 2006.

A. Potter, B. Motik, Y. Nenov, and I. Horrocks. Distributed RDF query answering with
dynamic data exchange. In International Semantic Web Conference (1), volume 9981 of
Lecture Notes in Computer Science, pages 480-497, 2016.

E. Prud’hommeaux, S. Harris, and A. Seaborne. SPARQL 1.1 Query Language. Technical
report, W3C, 2013.

D. Puiu, P. M. Barnaghi, R. Toenjes, D. Kuemper, M. I. Ali, A. Mileo, J. X. Parreira,
M. Fischer, S. Kolozali, N. FarajiDavar, F. Gao, T. Iggena, Thu-Le Pham, C. Nechifor,
D. Puschmann, and J. Fernandes. Citypulse: Large scale data analytics framework for
smart cities. IEEE Access, 4:1086-1108, 2016.

Y. Ren and J. Z. Pan. Optimising ontology stream reasoning with truth maintenance
system. In CIKM, pages 831-836. ACM, 2011.

M. M. Ribeiro. Belief Revision in Non-Classical Logics. Springer Briefs in Computer
Science. Springer, 2013.

M. Rinne, M. Solanki, and E. Nuutila. Rfid-based logistics monitoring with semantics-
driven event processing. In DEBS, pages 238-245. ACM, 2016.

H. Rott. Change, choice and inference: A study of belief revision and monmonotonic
reasoning. Number 42. Oxford University Press, 2001.

T. Saveta, E. Daskalaki, G. Flouris, I. Fundulaki, M. Herschel, and A. N. Ngomo. LANCE:
piercing to the heart of instance matching tools. In International Semantic Web Confer-
ence (1), volume 9366 of Lecture Notes in Computer Science, pages 375-391. Springer,

February 2017

[115]

[116]

[117]

[118]
[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]
[129]

[130]

[131]

[132]

[133]

2015.

T. Scharrenbach, J. Urbani, A. Margara, E. D. Valle, and A. Bernstein. Seven command-
ments for benchmarking semantic flow processing systems. In ESWC, volume 7882 of
Lecture Notes in Computer Science, pages 305-319. Springer, 2013.

A. Schatzle, M. Przyjaciel-Zablocki, S. Skilevic, and G. Lausen. S2RDF: RDF querying
with SPARQL on spark. PVLDB, 9(10):804-815, 2016.

L. Serafini and A. Tamilin. DRAGO: distributed reasoning architecture for the semantic
web. In ESWC, volume 3532 of Lecture Notes in Computer Science, pages 361-376.
Springer, 2005.

A. Skarlatidis, G. Paliouras, A. Artikis, and G. A. Vouros. Probabilistic event calculus
for event recognition. ACM Trans. Comput. Log., 16(2):11:1-11:37, 2015.

U. Srivastava and J. Widom. Flexible time management in data stream systems. In
PODS, pages 263-274. ACM, 2004.

H. Stuckenschmidt, S. Ceri, E. Della Valle, and F. van Harmelen. Towards expressive
stream reasoning. In Semantic Challenges in Sensor Networks, volume 10042 of Dagstuhl
Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany, 2010.
S. Tallevi-Diotallevi, S. Kotoulas, L. Foschini, F. Lécué, and A. Corradi. Real-time urban
monitoring in dublin using semantic and stream technologies. In International Semantic
Web Conference (2), volume 8219 of Lecture Notes in Computer Science, pages 178-194.
Springer, 2013.

N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and M. Stonebraker. Load shed-
ding in a data stream manager. In VLDB, pages 309-320, 2003.

M. Tiger and F. Heintz. Stream reasoning using temporal logic and predictive proba-
bilistic state models. In TIME, pages 196-205. IEEE Computer Society, 2016.

R. Tommasini, E. Della Valle, M. Balduini, and D. Dell’Aglio. Heaven: A framework for
systematic comparative research approach for RSP engines. In ESWC, volume 9678 of
Lecture Notes in Computer Science, pages 250-265. Springer, 2016.

A. Turhan and E. Zenker. Towards temporal fuzzy query answering on stream-based
data. In HiDeSt@KI, volume 1447 of CEUR Workshop Proceedings, pages 56—69. CEUR-
WS.org, 2015.

J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, and H. E. Bal. Webpie: A web-scale
parallel inference engine using mapreduce. J. Web Sem., 10:59-75, 2012.

J. Urbani, A. Margara, C. J. H. Jacobs, F. van Harmelen, and H. E. Bal. Dynamite: Par-
allel materialization of dynamic RDF data. In International Semantic Web Conference
(1), volume 8218 of Lecture Notes in Computer Science, pages 657-672. Springer, 2013.
R. Volz, S. Staab, and B. Motik. Incrementally maintaining materializations of ontologies
stored in logic databases. J. Data Semantics, 2:1-34, 2005.

O. Walavalkar, A. Joshi, T. Finin, and Y. Yesha. Streaming knowledge bases. In In
International Workshop on Scalable Semantic Web Knowledge Base Systems, 2008.

R. Yan, M. T. Greaves, W. P. Smith, and D. L. McGuinness. Remembering the important
things: Semantic importance in stream reasoning. In SR+SWIT@ISWC, volume 1783 of
CEUR Workshop Proceedings, pages 49-54. CEUR-WS.org, 2016.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica.
Apache spark: a unified engine for big data processing. Commun. ACM, 59(11):56-65,
2016.

X. Zhang, G. Cheng, and Y. Qu. Ontology summarization based on rdf sentence graph.
In WWW, pages 707-716. ACM, 2007.

Y. Zhang, M. Pham, 0. Corcho, and J. Calbimonte. Srbench: A streaming RDF/SPARQL
benchmark. In International Semantic Web Conference (1), volume 7649 of Lecture
Notes in Computer Science, pages 641-657. Springer, 2012.

