
Journal Title 0 (2017) 1–0 1
IOS Press

The Knowledge Graph as the Default Data
Model for Machine Learning
Xander Wilcke a,b,* Peter Bloem aand Victor de Boer a

a Faculty of Sciences, Vrije Universiteit Amsterdam
b Faculty of Spatial Economics, Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Abstract. In modern machine learning, raw data is the pre-
ferred input for our models. Where a decade ago data scien-
tists were still engineering features, manually picking out the
details they thought salient, they now prefer the data in their
raw form. As long as we can assume that all relevant and ir-
relevant information is present in the input data, we can de-
sign deep models that build up intermediate representations
to sift out relevant features. However, these models are often
domain specific and tailored to the task at hand, and therefore
unsuited for learning on heterogeneous knowledge: informa-
tion of different types and from different domains. If we can
develop methods that operate on this form of knowledge, we
can dispense with a great deal of ad-hoc feature engineering
and train deep models end-to-end in many more domains. To
accomplish this, we first need a data model capable of ex-
pressing heterogeneous knowledge naturally in various do-
mains, in as usable a form as possible, and satisfying as many
use cases as possible. In this position paper, we argue that the
knowledge graph is a suitable candidate for this data model.
This paper describes current research and discusses some of
the promises and challenges of this approach.

Keywords: Knowledge Graphs, Semantic Web, Machine
Learning, End-to-End Learning, Position paper

1. Introduction

In the last decade, the methodology of Data Science
has changed radically. Where machine learning practi-
tioners and statisticians would generally spend most of
their time on extracting meaningful features from their
data, often creating a derivative of the original data in
the process, they now prefer to feed their models the
data in their raw form. Specifically, data which still

*Corresponding Author, E-mail: w.x.wilcke@vu.nl.

contains all relevant and irrelevant information rather
than having been reduced to features selected or en-
gineered by data scientists. This shift can largely be
attributed to the emergence of deep learning, which
showed that we can build layered models of interme-
diate representations to sift out relevant features, and
which allows us to dispense with manual feature engi-
neering.

For example, in the domain of image analysis, pop-
ular feature extractors like SIFT [Low99] have given
way to Convolutional Neural Networks [LDH+90,
KSH12], which naturally consume raw images. These
are used for instance, in facial recognition models
building up layers of intermediate representations:
from low level features built on the raw pixels like lo-
cal edge detectors, to higher level features like spe-
cialized detectors for eyes, noses, up to the face of
a specific person [Le13]. Similarly, in audio analy-
sis, it is common to use models that consume audio
data directly [GMH13] and in Natural Language Pro-
cessing it is possible to achieve state-of-the-art per-
formance without explicit preprocessing steps such as
POS-tagging and parsing [NG15].

This is one of the strongest benefits of deep learn-
ing: we can directly feed the model the dataset as a
whole, containing all relevant and irrelevant informa-
tion, and trust the model to unpack it, to sift through
it, and to construct whatever low-level and high-level
features are relevant for the task at hand. Not only
do we not need to choose what features might be rel-
evant to the learning task—making ad-hoc decisions
and removing, adding, and reshaping information in
the process—we can let the model surprise us: it may
find features in our data that we would never have
thought of ourselves. With feature engineering now be-
ing part of the model itself, it becomes possible to learn

0000-0000/17/$00.00 c© 2017 – IOS Press and the authors. All rights reserved

mailto:w.x.wilcke@vu.nl

2

directly from the data. This is called end-to-end learn-
ing (we further explain this in the text box below).

However, all present end-to-end learning methods
are domain-specific: they are tailored to images, to
sound, or to language. When faced with heteroge-
neous knowledge—information of different types and
from different domains—we often find ourselves re-
sorting back to manual feature engineering. To avoid
this, we require a machine learning model capable of
directly consuming heterogeneous knowledge, and a
data model suitable of expressing such knowledge nat-
urally and with minimal loss of information. In this
paper, we argue that the knowledge graph is a suit-
able data model for this purpose and that, in order to
achieve end-to-end learning on heterogeneous knowl-
edge, we should a) adopt the knowledge graph as the
default data model for this kind of knowledge and b)
develop end-to-end models that can directly consume
these knowledge graphs.

Concretely, we will use the term heterogeneous
knowledge to refer to: entities (things), their rela-
tions, and their attributes. For instance, in a company
database, we may find entities such as employees,
departments, resources and clients. Relations express
which employees work together, which department
each employee works for and so on. Attributes can be
simple strings, such as names and social security num-
bers, but also richer media like short biographies, pho-
tographs, and promotional videos.

We will first explain the principle behind the knowl-
edge graph model with the help of several practical
examples, followed by a discussion on the potential
of knowledge graphs for end-to-end learning and on
the challenges of this approach. We will finish with a
concise overview of promising current research in this
area.

End-to-End Learning

Why is end-to-end learning now so important to data scientists? Is this just a modern affectation? Paul Mineiro
provides a good reason to consider this a more fundamental practice [Min]. In most areas of software engineer-
ing, solving a complex problem begins with breaking the problem up into subproblems: divide and conquer.
Each subproblem is then solved in one module, and the modules are chained together to produce the required
end result. If, however, these modules use machine learning, we have to take into account that their answers are
necessarily inexact.

“Unfortunately, in machine learning we never exactly solve a problem. At best, we approximately solve a problem.
This is where the technique needs modification: in software engineering the subproblem solutions are exact, but in
machine learning errors compound and the aggregate result can be complete rubbish. In addition apparently para-
doxical situations can arise where a component is “improved” in isolation yet aggregate system performance de-
grades when this “improvement” is deployed (e.g., due to the pattern of errors now being unexpected by downstream
components, even if they are less frequent).

Does this mean we are doomed to think holistically (which doesn’t sound scalable to large problems)? No, but it
means you have to be defensive about subproblem decomposition. The best strategy, when feasible, is to train the
system end-to-end, i.e., optimize all components (and the composition strategy) together rather than in isolation.”

- Paul Mineiro, 15-02-2017 [Min]

Even if we are forced to pre-train each component in isolation, it is crucial to follow that pre-training up with a
complete end-to-end training step when all the modules are composed [Bot]. This puts a very strong constraint
on the kind of modules that we can use: an error signal needs to be able to propagate though all layers of the
architecture, from the output back to the original data that inspired it.
Any pre-processing done on the data, any manual feature extraction, harmonization and or scaling can be seen
as a module in the pipeline that cannot be tweaked, and does not allow a final optimization end-to-end. Any error
introduced by such modules can never be retrieved. Since these are often modules at the start of our pipeline,
even the smallest mistake or suboptimal choice can be blown up exponentially as we add layers to the model.

3

1.1. Use cases

Throughout the paper, we will use three different use
cases as running examples:

Spam detection is one of the first classification prob-
lems to be solved well enough to be widely
implemented in commercial products. Early ap-
proaches tackled this task by converting email
text to term vectors, and using these term vectors
in a naive Bayes classifier.

Movie recommendation is a standard use case for
recommender systems. Here, we have a set of
users, and a set of movies. Some users have given
ratings to some movies. In one early successful
model, ratings are written as a matrix, which is
then decomposed into factors that are multiplied
back again to produce new ratings from which
recommendations are derived.

Market basket analysis is one of earliest success sto-
ries which helped retailers understand customer
purchasing behaviour, and which allowed them
to adjust their strategy accordingly. The break-
through that allowed this came with association
rule mining, which converts all transactions into
vectors and then computes their inner and outer
correlations.

2. The knowledge graph

The aforementioned use cases share several common
aspects: in each case we have a set of instances,
and we have a collection of diverse and heteroge-
neous facts representing our knowledge about these
instances. Some facts link instances together (John is
a friend of Mary, John likes Jurassic Park) and some
describe attributes of instances (Jurassic Park was re-
leased on June 9, 1993).

The question of how to represent such knowledge is
not a new one. It has been studied by AI researchers
since the invention of the field, and before [DSS93].
The most recent large-scale endeavour in this area is
undoubtedly the Semantic Web, where knowledge is
encoded in knowledge graphs.

The knowledge graph data model used in the Se-
mantic Web is based on three basic principles:

1. Encode knowledge using statements.
2. Express background knowledge in ontologies.
3. Reuse knowledge between datasets.

We will briefly discuss each of these next.

Figure 1. Graphical representation of the example given in §2. Edges
represent binary relations. Vertices’ shapes reflect their roles: solid
circles represent entities, empty circles represent their attributes.

2.1. Encode knowledge using statements

The most fundamental idea behind the Semantic Web
is that knowledge should be expressed using state-
ments. Consider the following example:

Kate knows Mary.

Mary likes Pete.

Mary age “32“.

Pete brother_of Kate.

Pete born_on “27-03-1982”.

All of the above are statements that comply with the
Resource Description Framework (RDF), a data model
which forms the basic building block of the Semantic
Web.1 This model specifies that each statement should
consist of a single binary property (the verb) which re-
lates two resources (the subject and object) in a left-
to-right order. Together, these three are referred to as
an RDF triple. We can also represent this example as a
directed graph as shown in Figure 1.

Resources can be either entities (things) or liter-
als which hold values such as text, numbers or dates.
Triples can either express relations between entities
when the resources on both sides are things, or they can
express attributes when the resource on the right-hand
side is a literal. For instance, the last line of our ex-
ample set expresses an attribute of Pete (date of birth)
with value “27-03-1982”.

Apart from the few rules already listed, the RDF
data model itself does not impose any further re-
strictions on how knowledge engineers should model
their knowledge: we could have modelled our exam-
ple differently, for instance by representing dates as re-
sources. In general, such modelling choices depend on
the domain and on the intended purposes of the dataset.

2.2. Express background knowledge in ontologies

Where the RDF data model gives free rein over mod-
elling choices, ontologies offer a way to express how

1https://www.w3.org/RDF/

4

knowledge is structured in a given domain and by a
given community. For this purpose, ontologies contain
classes (entity types) and properties that describe the
domain, as well as constraints and inferences on these
classes and properties. For instance, an ontology might
define Person as the class containing all individual
persons. It might likewise define type as the property
that assigns an entity to a class. As an example, let us
use these to extend our example set with the following
statements:

Kate type Person.

Mary type Person.

Pete type Person.

Kate, Mary, and Pete are now all said to be instances
of the class Person. This class may hold various prop-
erties, such as that it is equivalent to the class Human,
disjoint with the class Animal, and that it is a sub-
class of class Agent. This last property is an exam-
ple of a recursive property, and can be expressed using
the RDFS—RDF Schema—ontology2 which extends
the bare RDF model with several practical classes and
properties. The other two relations are more complex,
and require a more expressive ontology to be stated.
OWL, the Web Ontology Language, is generally the
preferred choice for this purpose.3

Ontologies can be used to derive implicit knowledge.
For instance, knowing that Kate is of the type Person,
and that Person is itself a subclass of Agent, allows
a reasoning engine to derive that Kate is an Agent as
well. We will return to this topic in Section 4.2.

2.3. Reuse knowledge between datasets

Re-using knowledge can be done by referring to re-
sources not by name, but by a unique identifier. On
the Semantic Web, these identifiers are called Inter-
nationalized Resource Identifiers, or IRIs, and gen-
erally take the form of a web address. For instance,
we can use the IRIs http://vu.nl/staff/KateBishop and
http://vu.nl/staff/MaryWatson to refer to Kate and Mary,
respectively. More often, we would write these IRIs as
vu:KateBishop and vu:MaryWatson, with vu: as short-
hand for the http://vu.nl/staff/ namespace. We can now
rewrite the first statement of our example set as

vu:KateBishop knows vu:MaryWatson .

2https://www.w3.org/TR/rdf-schema/
3https://www.w3.org/OWL/

Figure 2. Extension of the original example (Fig. 1) with a dataset on
VU employees. Resources Kate and Pete occur in both graphs
and can therefore be used to link the datasets together.

This statement implies the same as before, but now
we can safely add other people also named Kate
or Mary without having to worry about clashes. Of
course, we can do the same for our properties. To spice
things up, let us assume that we used an already exist-
ing ontology, say the widely used FOAF (Friend Of A
Friend) ontology.4 This lets us write the statement as

vu:KateBishop foaf:knows vu:MaryWatson .

We now have a triple that is fully compliant with the
RDF data model, and which uses knowledge from a
shared and common ontology.

The principle of reusing knowledge is a simple idea
with several consequences, most particular with re-
spect to integrating, dereferencing, and disambiguat-
ing knowledge:

Integrated knowledge
Integrating datasets is as simple as linking two
knowledge graphs at equivalent resources. If such
a resource holds the same IRI in both datasets
an implicit coupling already exists and no fur-
ther action is required. In practice, this boils down
to simply concatenating one set of statements to
another. For instance, we can extend our exam-
ple set with another dataset on VU employees as
long as that dataset contains any of the three re-
sources: Kate, Mary, or Pete (Fig. 2). Of course,
integration on the data level does not mean that

4https://xmlns.com/foaf/spec/

5

the knowledge itself is neatly integrated as well:
different knowledge graphs can be the result of
different modelling decisions. These will persist
after integration. We will return to this topic in
more detail in Section 4.4.

Dereferenceable knowledge
An IRI is more than just an identifier: it can also
be a web address pointing to the location where
a resource or property is described. For these
data points, we can retrieve the description us-
ing standard HTTP. This is called dereferencing,
and allows for an intuitive way to access external
knowledge. In practice, not all IRIs are derefer-
enceable, but many are.

Disambiguated knowledge
Dereferencing IRIs allows us to directly and un-
ambiguously retrieve relevant information about
entities in a knowledge graph, amongst which are
classes and properties in embedded ontologies.
Commonly included information encompasses
type specifications, descriptions, and various con-
straints. For instance, dereferencing foaf:knows
tells us it is a property used to specify that a cer-
tain person knows another person, and that we
can infer that resources that are linked through
this property are of type Person.

We have recently seen uptake of these principles on a
grand scale, with the Linked Open Data (LOD) cloud
as prime example. With more than 38 billion state-
ments from over 1100 datasets (Fig. 3), the LOD cloud
constitutes a vast distributed knowledge graph which
encompasses almost any domain imaginable. As such,
it comes close to the original dream of a Semantic Web.

With this wealth of data available, we now face the
challenge of designing machine learning models capa-
ble of learning in a world of knowledge graphs.

3. Learning in a world of knowledge graphs

We now revisit the three use cases described in the
introduction and discuss how they can benefit from
the use of knowledge graphs as default data model,
and how this leads to a suitable climate for end-to-end
learning by removing the need for manual feature en-
gineering.

3.1. Spam detection

Before, we discussed how early spam detection meth-
ods classified e-mails based solely on the content of

Legend

Cross Domain

Geography

Government

Life Sciences

Linguistics

Media

Publications

Social Networking

User Generated

Incoming Links

Outgoing Links

Linked...

CIP...

Uni...

Fis...

Joh...

Web...

DBT...

Dat... sta...

Zebrafish...

statusnet...

statusnet...

El ...

status...

RDF Bo...

MLS...

Cell type

bio...

Uni...

Dat...

Vertebrat...

Ima...

ECC...

ope...

de ...

SORS

Cancer Ch...
RAMEAU...

status...

Met...

Ave...

Bio...

Lexvo

Bio2RD...

VIV...

Budape...

sta...

IEEE V...

Logger...

Bra...

DAT...

RxNORM

Natural P...

Uni...

Bio2RD...

BIRNLex

dev...

Teleos...

Breast ti...

status...

dotAC ...

eagle ...

WHO Adver...

Common Te...

Ascomy...

MeGO

Ape...

Compar...

Pok...

Molecule ...

sta...

ope...

eag...

Eur...

Ontology ...

Mouse pat...

MARC C...

Britis...

Logical O...

VIV...

Lin...

HUGO

lemonU...

Ape...

reference...

ePrint...

Ape...

Orphanet ...

Research ...

Cop...

Uni...

Adverse E...

Bio...

IdRef:...

Ape...

Sem...

SIDER:...

ope...

Environme...

Ins...

GeoSpe...

Intern...

dbn...

Sta...

Ontology ...

Inever...

eagle ...

The...

Biomedica...

Uni...

Univer...

vul...

not...

DBpedi...

20t...

Mat...

CN ...

Met...

FiE...

Nat...

NIFSTD

Uni...

NER...

Req...

Univer...

Master...

MaHCO ...

int...

Sel...

status...

ope...

New Yo...

Uni... Uni...

Lin...

Systems B...

status...

CLL...

status...

myopen...

France...

NTN...

Bank f...

Librar...

Neural Im...

Dru...

San...

Metath...

tax...

LOD...

Physician...

Alp...

Fin...

status...

GeoSpe...

Plant ...

Ape...

WordNe...

Breast...

DBTune...

JIT...

Internati...

SAL...

Linked...

Inf...

Pathwa...

EIONET...

Une...

Org...

Software ...

Gov...

Open A...

status...

Nor...

Units ...

Cerebrote...

Inever... UK ...

Bio2RD...

Env...

status...

Str...

pde...

Foc...

sta...

ope...

aliada...

DWS Gr...

Ope...

ope...

MIxS C...

bio...

Uni...

Health Le...

UMT...

Uni...

LIB...

Bio2RD...

Ontolo...

Chemical ...

Cli...

RNA ontol...

DBp...

KOR...

status...

SemanticS...

ope...

UNESCO...

DBT...

sta...

Lea...

Subcellul...

Ape...

ERA...

eagle ...

Bio2RD...

C. ele...

ope...

status...

Sch...

RISKS ...

Uni...

Didact...

Human dev...

Int...

Tradition...

DEPLOY...

CLL...

Gene Regu...

Dictyo...

Ope...

Plant Ana...

Deep B...

Protein p...

All...

zhi...

ope...

Bib...

Uni...

ope...

MGED Onto...

Tai...

Rec...

myE...

Bio2RD...

Lin...

Nat...

Dea...

IATI a...

BRENDA ti...

CE4...

ASN...

Ren...

Arc...

Wor...

Uni...

Int...

EU:...

sta...

Bio2RD...

educat...

Ope...

School of...

Ape...

Last.F...

ISO...

Animal...

CiteSeer ...

ESD...

gem...

Lin...

ope...

Str...

HeB...

Clinic...

Kallik...

sea...

ope...

Sch...

Fly...

ope...

Uni...

status...

Planet...

Personal_...

Ope...

OpenCa...

status...

Lot...

RUIAN ...

Associati...

DBpedi...

Uni...

vertebrat...

status...

DBLP Comp...

Uni...

Uni...

New...

ope...

mEd...

status...

Ins...

Uni...

Nat...

Bio2RD...

BioPAX

ope...

VIV...

Bio...

EnA...

statusnet...

OSM...

DrugBa...

status...

status...

SysMO JERM

datos ...

EnA...

Hed...

Uni...

iServe...

Federa...

Uni...

NIF Cell

Family He...

Uni...

Ter...

Gene Onto...

Ape...

EventM...

VIV...

UMBEL ...

Ara...

Uni...

Sem...

Uni...

Eva...

VANDF

CPV...

data h...

CLL...

Lipid ...

Mammalian...

Ope...

Uni...

Electroca...

status...

status...

Eng...

typ...

Nom...

Oce...

eag...

FOO...

Edu...

webconf

Ope...

Africa...

Cancer Re...

Units ...

ope...

status...

DBT...

BBC Mu...

Art...

Geo...

Suggested...

Bas...

Wor...

ISP...

Tra...

Informati...

Yah...

status...

status...

Uni...

ESD St...

Ape...

Edi...

ope...

RSS...

DIKB E...

System...

Bio2RD...

ICPC 2 PL...

sta...

Fungal...

Pho...

Hellen...

Nex...

Europe...

Man...

Ins...

Uni...

pro...

Linked...

Epilep...

GNOSS....

Lin...

Oce...

sta...

TOK_On...

DBp...

Lin...

xxx...

Cereal pl...

status...

Cat...

status...

ope...

ope...

status...

Diagno...

Web...
STI...

ICD10CM

Ath...

Influenza...

sta...

ope...

ope...

DBLP R...

Oce...

BBC Pr...

semanl...

eagle ...

status...

Ape...

Comput...

Ape...

apache

status...

Sou...

Reg...

Uni...

Korean In...

sta...

ope...

Gemein...

CLL...

COSTART

Car...

National ...

eVOC (Exp...

EUM...

NMR instr...

CLLD G...

EU ...

Telegr...

semant...

Ita...

Eur...

ope...

ope...

TaxonC...

Uni...

ope...

eag...

Bio2RD...

Bib...

Ape...

Uni...

Pol...

The...

Amino ...

Uni...

IST...

SNP Ontol...

Kid...

Ontology ...

Uni...

ALP...

Uni...

Ope...

Con...

Ban...

Ope...

status...

Bio2RD...

status...

Uni...

Nation...

Human dev...

Bio2RD...

Cell line...

pat...

EnA...

ope...

VIVO

Mosquito ...

OLA...

Uni...

med...

CLL...

Cornet...

Pok...

Lin...

IBM Re...

dbp...

RDF...

My ...

Ope...

Role O...

status...

Lin...

EUR...

status...

status...

Deu...

Divers...

COR...

status...

zar...

Instit...

Acc...

The...

OBOE

CRISP The...

fun

NIF Dysfu...

NCI Thesa...

NHS...

Chemical ...

Mer...

St....

Uni...

Rep...

Uni...

Taxono...

Univer...

Syndromic...

OBOE SBC

SIM...

ope...

Plant ...

oce...

Sem...

Basic Ver...

Judaic...

TCG...

Edu...

ReSIST...

Anatomica...

Uni...

Mul...

Reprod...

Uni...

ope...

Yeast ...

Pub...

datos....

Lic...

ope...

Yov...

FAO ge...

Bio2RD...

General F...

ope...

BioTop

Deu...

Glo...

gre...

eag...

Experimen...

Linked...

ATC...

Ger...

DBT...

Bio2RD...

ReSIST...

Internati...

Reg...

Emotion O...

TCMGen...

Nob...

CPA...

MedDRA

Cardiac E...

eagle ...

Lem...

tax...

Reg...

lobid ...

Minimal a...

CLL...

AI/RHEUM

ICD 10...

Geo...

Bio2RD...

VIV...

Spider On...

Phenotypi...

Ope...

Che...

Bri...

Physic...

Deu...

Pro...

eag...

sta...

Dat...

ope...

Wik...

Vaccine O...

eag...

Sen...

Measur...

The...

Smokin...

Bio...

Uni...

Gov...

eagle ...

Gre...

TIP

Hymenopte...

DBpedi...BibBase

Uni...

CPC...

Verteb...

Austra...

eagle ...

Geo...

Uni...

Mos...

Human Phe...

Genera...

Uni...

gdlc

DBT...

Museos...

Ope...

DBLP B...

resear...

Job...

Ams...

DBT...

Per...

ISP...

eag...

vivo2d...

sta...

Proteo...

W3C

FlyBase C...

Swe...

Med...

Ontology ...

Internati...

sta...

Soc...

IxnO

Current P...

Uni...

NUTS (...

DM2E

Wea...

Cou...

Physic...

Ontology ...

Cad...

Linked...

status...

Lin...

ISOcat

Dro...

ChE...

SNOMED Cl...

Neomark O...

Pri...

ope...

eagle ...

Deusto...

Bio...

BPR...

flickr...

Mouse adu...

status...

SAL...

Lin...

Bio2RD...

Transp...

Nor...

pho...

Uni...

dat...

sta...

Dendri...

Ontology ...

Int...

Ord...

Bio...

AGR...

Gene Regu...

status...

DisGeN...

Solana...

Ontolo...

Pub...

Wor...

U.S...

status...

Verrij...

UNO...

Gar...

Sur...

Sleep Dom...

NCBI orga...

Sho...

Lin...

MAS...

status...

Diavge...

Par...

Bundes...

Eni...

OLiA

Com...

NAS...

ope...

Bio...

openli...

Bio2RD...

eag...

Air...

eagle ...

Pro...

CTI...

the...

Num...

Job...

Ont...

Mul...

ope...

Lin...

Human dis...

Aus...

Pro...

Amphib...

National ...

Uber anat...

Aut...

EnA...

Univer...

Lin...

Uni...

yso...

bus...

Eng...

status...

Råd...

Uni...

Amphibian...

ope...

IMGT O...

Res...

RDF...

DailyM...

Uni...

Mun...

Ube...

Translati...

200...

BBC Wi...

Cognitive...

Eur...

data s...

Tra...

WordNe...

statusnet...

Lis...

Ent...

Dat...

Protei...

status...

Act...

Bilateria...

Ins...

PHARE

xLi...

PMA 2010

Ape...

Che...

ope...

Sample pr...

Cell Line...

Drosophil...

PDE...

lingvo...

Neomar...

Zhi...

The...

Uni...

ISI...

Ape...

Gre...

OLi...

Uni...

DBpedi...

Cognitive...

EEA...

World ...

statis...

Mi Guí...

Ins...

statusnet...

lobid ...

ECS So...

Experi...

Fac...

Student H...

EU ...

Gen...

berlios

CAO

status...

status...

Dat...

ope...

twc...

san...

status...

Europe...

Event (IN...

statusnet...

Eur...

Eurost...

Discog...

MOR...

status...

HCPCS

status...

ope...

Soc...

Bone Dysp...

Org...

Man...

SIT...

FDA Me...

Lis...

EMN

Uni...

Cell line...

eagle i r...

status...

ope...

Plant ...

southa...

Parasi...

Bio...

status...

YAGO

sta...

lin...

RIS...

Situat...

transp...

ChE...

status...

geo...

status...

TheSoz...

status...

sta...

Uni...

UK ...

Twa...

URIBur...

Ape...

NAI...

ope...

Gem...

Infectiou...

Bio2RD...

Goo...

eag...

Pol...

Commun...

Gene Onto...

STW Th...

UN/LOC...

VIV...

Founda...

Ple...

BioAssay ...

ich...

Tec...

Ape...

Random...

DBp...

status...

data.d...

Linked...

Fly taxon...

Rus...

AEM...

Sma...

Aud...

IWN

Eng...

Non Ra...

status...

Uni...

Rea...

Online Me...

Uni...

Tem...

sta...

Reu...

Malaria O...

NanoParti...

EUR...

bio...

Human dev...

Hellen...

Uni...

Univer...

uni...

GEnera...

Red...

Dut...

Uni...

Ape...

PRotein O...

B3Kat ...

ope...

Mis Mu...

lexinfo

Lis...

Eur...

Eur...

Semant...

R&D...

Ape...

Bio2RD...

ope...

Art...

status...

Uni...

Time Even...

Lin...

GovTra...

DBT...

Medical S...

R&D...

Ont...

Lin...

VIVO

sem...

Chroni...

Pro...

Uni...

Bio2RD...

ePrints3 ...

eag...

tag...

Host Path...

Internati...

Agr...

Medaka fi...

WordNe...

ope...

Linked...

status...

C. elegan...

Biolog...

Atl...

Cal...

DBpedia

ICPS N...

web...

wiktio...

Cod...

Resili...

Multip...

Sem...

Organi...

Oce...

Freebase

ope...

LCS...

status...

UK JIS...

VIAF: ...

Cro...

ope...

PKO_Re

JRC...

Fissio...

BabelN...

Fundaç...

cro...

ABA Ad...

JRC...

Comprehen...

Rat St...

Geo...

Ontology ...

eag...

eagle ...

Cha...

Far...

Bib...

Bio2RD...

Uni...

ExO

Bio2RD...

Eur...

Uni...

Not...

Sequence ...

Ape...

eagle ...

Mass spec...

Spatia...

Whe...

DBT...

Mosquito ...

Oce...

Ort...

Europe...

Acc...

eagle ...

Med...

Pre...

Kla...

TWC...

The...

LOD2 P...

Uni...

Ope...

ICD10

Uni...

MESH Thes...

L

ICA...

CPV...

Uni...

Brucellos...

Bio2RD...

Uni...

Linked...

Tick g...

cab...

Read Code...

MedlinePl...

Sco...

Bio2RD...

Ape...

Teleost A...

EnA...

dat...

sta...

Near

SoyOnt...

ReSIST Pr...

Food a...

Ape...

ope...

iet...

Eurost...

Pediatric...

Pro...

ope...

Cell Cycl...

COL...

ope...

AEG...

Mental Fu...

Glo...

Ontology ...

ope...

cia...

Ontology ...

sta...

sta...

ope...

Bio2RD...

Hungar...

Ape...

N L...

VIV...

Bleeding ...

ECL...

Cze...

Ape...

201...

Age...

status...

EU ...

Ins...

Ope...

status...

NAI...

Revyu....

HEALTH_IN...

EnA...

the...

Tra...

Ita...

The Eu...

Pan...

Plant Ont...

C. ...

CLL...

LinkLi...

Uni...

Neural El...

yso...

RDF...

wordpr...

EARTh

MEx...

Ontology ...

Uni...

Diseas...

Uni...

Bro...

Interacti...

Xenopus a...

Uni...

Gal...

Fra...

ZBW...

LAAS C...

Uni...

Eve...

RadLex

Basic For...

eagle ...

ThI...

bio...

ore...

Ontology ...

ISI...

Uni...

DBpedi...

Sud...

IEEE P...

status...

Ser...

status...

Ten...

status...

Vyt...

ope...

ope...

Figure 3. A depiction of the LOD cloud, holding over 38 billion
facts from more than 1100 linked datasets. Each vertex represents
a separate dataset in the form of a knowledge graph. An edge be-
tween two datasets indicates that they share at least one IRI. Figure
from [AMB+].

the message. We often have much more information
at hand. We can distinguish between the body text,
the subject heading, and the quoted text from previous
emails. But we also have other attributes: the sender,
the receiver, and everybody listed in the CC. We know
the IP address of the SMTP server used to send the
email, which can be easily linked to a region. In a cor-
porate setting, many users correspond to employees of
our companies, for whom we know dates-of-birth, de-
partments of the company, perhaps even portrait im-
ages or a short biography. All these aspects provide a
wealth of information that can be used in the learning
task.

In the traditional setting, the data scientist must de-
cide how to translate all this knowledge into feature
vectors, so that machine learning models can learn
from it. This translation has to be done by hand and the
data scientist in question will have to make a judge-
ment in each case whether the added feature is worth
the effort. Instead, it would be far more convenient and
effective if we can train a suitable end-to-end model
directly on the dataset as a whole, and let it learn the
most important features itself. We can achieve this by
expressing this dataset in a knowledge graph.

An example of how such a knowledge graph might
look is depicted in Figure 4. Here, information about
who sent the e-mails, who received them, which e-
mails are replies, and which SMTP servers were used
are combined in a single graph. The task is now to la-

6

Figure 4. An example dataset on email conversations used in the use case on spam detection of §3.1.

bel the vertices that represent emails as spam or not
spam—a straightforward entity classification task.

3.2. Movie Recommendation

In traditional recommender systems, movie recom-
mendations are generated by constructing a matrix of
movies, people and received ratings. This approach as-
sumes that people are likely to enjoy the same movies
as people with a similar taste, and therefore needs ex-
isting ratings for effective recommendation [KBV09].
Unfortunately, we do not always have actual ratings
yet and are thus unable to start these computations.
This is a common issue in the traditional setting, called
the cold-start problem.

We can circumvent this problem by relying on addi-
tional information to make our initial predictions. For
instance, we can include the principal actors, the di-
rector, the genre, the country of origin, the year it was
made, whether it was adapted from a book, et cetera.
Including this knowledge solves the cold start problem
because we can link movies and users for which no
ratings are yet available to similar entities through this
background data.

An example of a knowledge graph about movies is
depicted in Figure 5. The dataset featured there con-
sists of two integrated knowledge graphs: one about
movies in general, and another containing movie rat-
ings provided by users. Both graphs refer to movies
by the same IRIs, and can thus be linked together
via those resources. We can now recast the recom-
mendation task as link prediction, specifically the pre-
diction of the property likes that binds users to
movies. Background knowledge and existing ratings
can both be used, as their availability allows. For in-
stance, while the movie Indiana_Jones has no rat-
ings, we do know that it is of the same genre and

from the same director as Jurassic_Park. Any user
who likes Jurassic_Park might therefore also like
Indiana_Jones.

3.3. Market Basket Analysis

Before, we mentioned how retailers originally used
transactional information to map customer purchase
behaviour. Of course, we can include much more in-
formation than only anonymous transactions. For in-
stance, we can take into account the current discount
on items, whether they are healthy, and where they are
placed in the store. Consumers are already providing
retailers with large amounts of personal information
as well: age, address, and even indirectly information
about their marital and financial status. All these at-
tributes can contribute to a precise profile of our cus-
tomers.

Limiting the data purely to items imposes an up-
per bar on the complexity of the patterns our meth-
ods can discover. However, by integrating additional
knowledge on products, ingredients, and ecological re-
ports, our algorithms can discover more complex pat-
terns. They might, for example, find that Certified Hu-
mane5 products are often bought together, that people
who buy these products also buy those which are eco-
friendly, or that products with a low nutritional value
are more often bought on sunny days.

An example of how a knowledge graph on transac-
tions might look is shown in Figure 6. Each transac-
tion is linked to the items that were bought at that mo-
ment. For instance, all three transactions involve buy-
ing drumsticks. This product consist of chicken, which
we know due to the coupling of the knowledge graph
on transactions with that of product information. We

5http://certifiedhumane.org/

7

Figure 5. An example dataset on movies and ratings used in the use case on movie recommendations of §3.2.

further extended this by integrating external datasets
about suppliers and ecological reports.

3.4. The default data model?

All three use cases benefited from the use of knowl-
edge graphs to model heterogeneous knowledge, as
opposed to the current de facto default: the table. There
are however, more data models capable of express-
ing heterogeneous knowledge natively. This raises the
question whether the same can also be accomplished
by modelling our knowledge in some other data model.

Let us consider two popular alternatives: the rela-
tional model (for database management) and XML.

The tree structure of XML is a limiting factor com-
pared to knowledge graphs. Any graph structure we
want to store in XML data must be encoded using links
that are not native to the data model. If, for instance,
we want to store a social network in an XML format,
say with a single node for each person, the relations be-
tween these people must be encoded by links between
these nodes that are not native to the data model. A
learning model designed to consume XML would ex-
ploit the tree structure, but not the ad-hoc graph struc-
ture between these nodes.

The differences between the relational model and
the knowledge graph are more subtle. Indeed, there are
often very seamless translations between the two. Nev-
ertheless, there are some differences, mostly based on
the way these models are currently used (rather than
their intrinsic properties), that make knowledge graphs
a more practical candidate for end-to-end learning on
heterogeneous knowledge.

One important difference is how both data models
allow data integration: where it is a simple task to inte-
grate two knowledge graphs at the data level—we only
need one IRI shared by both—this is a considerable
problem with relational databases and typically re-
quires various complex table operations [HS95]. While
data integration by matching IRIs is certainly no silver

bullet (as discussed further in Section 4.4), it does al-
low a very simple first step to integration. This is im-
portant in the context of end-to-end learning, because
it makes it possible, in principle, to let the model learn
the rest of the data integration. While this is an ambi-
tious goal, knowledge graphs in principle allow us to
link two datasets in the simplest possible manner, and
let the model learn the harmonization between the two,
insofar as it is relevant to the learning task.6

Another difference is simply the availability of data:
relational databases are typically designed for a spe-
cific purpose and often operate as solitary units in an
enclosed environment. Data hosted as such is usually
in some proprietary format and difficult to retrieve as a
single file, in a standardized open format. Knowledge
graphs widely published, and a mature stack of open
standards is available to encode them.

Of course, there are domains in which the knowl-
edge graph is a poor choice of data model. It would
be highly impractical to convert every pixel of every
image in an image database to a node in a knowledge
graph. However, it is feasible to represent images as
literals in a knowledge graph. For a given set of im-
ages, this allows us to present the raw pixel data, to-
gether with its metadata in a unified format. This cre-
ates a spectrum of datasets, where at one end, the rel-
evant information is primarily encoded in the literals
and at the other, the relevant data is primarily encoded
in the graph structure itself.

4. The challenges ahead

In the previous section, we argued that expressing
heterogeneous knowledge in knowledge graphs holds

6A similar effect could be achieved for relational databases if IRIs
(or some other universal naming scheme) were adopted to create
keys between databases, but we are not aware of any practical efforts
to that effect.

8

Figure 6. An example dataset on transactions, their items, and additional information used in the use case on market basket analysis of §3.3.

great promise. We assumed in each case that effective
end-to-end learning models are available. However, to
develop such models some key challenges need to be
addressed, specifically on how to deal with incom-
plete knowledge, implicit knowledge, heterogeneous
knowledge, and differently-modelled knowledge. We
will briefly discuss each of these problems next.

4.1. Incomplete knowledge

Knowledge graphs are inherently forgiving towards
missing values: rather than to force knowledge engi-
neers to fill in the blanks with artificial replacements—
NONE, NULL, -1, 99999, et cetera—missing knowl-
edge is simply omitted altogether.

When dealing with real-world knowledge, we are
often faced with large amounts of missing values: for
many properties in such a dataset, there may be more
entities for which the value is missing, than for which
it is known.

While the occasional missing value can be dealt
with accurately enough using current imputation meth-
ods, guessing values attributes for the majority of in-
stances from a small sample of provides values is prob-
lematic. Ideally, models for knowledge graphs will in-
stead simply use the information that is present, and
ignore the information that is not, dealing with the
uneven distribution of information among entities na-
tively.

4.2. Implicit knowledge

Knowledge graphs contain a wealth of implicit knowl-
edge, implied through the interplay of assertion knowl-
edge and background knowledge. Consider class in-
heritance: for any instance of class C1 holds that, if
C1is a subclass of C2, then it is also an instance of class
C2. Here, additional knowledge is derived by exploit-
ing the property’s transitivity.

In the case of end-to-end learning, the ability to ex-
ploit implicit knowledge should ideally be part of the
model itself. Already, studies have shown that machine
learning models are capable of approximating deduc-
tive reasoning with background knowledge [PS16]. If
we can incorporate such methods into end-to-end mod-
els, it becomes possible to let these models learn the
most appropriate level of inference themselves.

4.3. Heterogeneous knowledge

Recall that literals allow us to state explicit values—
texts, numbers, dates, IDs, et cetera—as direct at-
tributes of resources. This means that literals contain
their own values, which contrasts with non-literal re-
sources for which their local neighbourhood—their
context—is the ‘value’. Simply treating literals the
same as non-literal resources will therefore be ineffec-
tive. Concretely, this would imply that literals and non-
literals can be compared using the same distance met-
ric. However, any comparison between explicit values
and contexts is unlikely to yield sensible results. In-
stead, we must treat literals and non-literals as separate
cases. Moreover, we must also deal with each different
data type separately and accordingly: texts as strings,
numbers and dates as ordinal values, IDs as nominal
values, et cetera.

For instance, in our spam detection example, both
the e-mails’ title and body were modelled as string lit-
erals. The simplest solution would be to simply ignore
these attributes and to focus solely on non-literal re-
sources, but doing so comes at the cost of losing po-
tentially useful knowledge. Instead, we can also design
our models with the ability to compare strings using
some string similarity metric, or represent them using
a learned embedding. That way, rather than perceiving
the title “Just saying hello” as totally different from
“RE: Just saying hello”, our models would discover
that these two titles are actually very similar.

9

4.4. Differently-modelled knowledge

Different knowledge engineers represent their knowl-
edge in different ways. The choices they make are re-
flected in the topology of the knowledge graphs they
produce: some knowledge graphs have a relatively
simple structure while others are fairly complex, some
require one step to link properties while others use
three, some strictly define their constraints while oth-
ers are lenient.

Recall how easy it is to integrate two knowledge
graphs: as long as they share at least one IRI, an im-
plicit integration already exists. Of course, this integra-
tion only affects the data layer: the combined knowl-
edge expressed by these data remains unchanged. This
means that differences in modelling decisions remain
present in the resulting knowledge graph after inte-
gration. This can lead to an internally heterogeneous
knowledge graph.

As a concrete example, consider once more the use
case of movie recommendation (Fig 5). To model the
ratings given by users, we linked users to movies using
a single property: X likes Y. We can also model the
same relation using an intermediate vertex—a movie
rating—and let it link both to the movie which was
rated and to the literal which holds the actual rating
itself:

Mary has_rating Mary_Rating_7.
Mary_Rating_7 rates Jurassic_Park.
Mary_Rating_7 has_value "1.0".
Mary_Rating_7 timestamp "080517T124559".

Dealing with knowledge modelled in different ways
remains a challenge for effective machine learning.
Successful end-to-end models need to take this topo-
logical variance into account so they can recognize that
similar information is expressed in different ways.

5. Current approaches

Recent years witnessed a growing interest in the
knowledge graph by the machine learning commu-
nity. Initial explorations focused primarily on how en-
tire knowledge graphs can be ‘flattened’ into plain
tables—a process known as propositionalization—for
use with traditional learning methods, whereas more
recent studies are looking for more natural ways to pro-
cess knowledge graphs. This has lead to various meth-
ods which can be split into two different approaches:

1) those which extract feature vectors from the graph
for use as input to traditional models, and 2) those
which create an internal representation of the knowl-
edge graph itself.

5.1. Extracting feature vectors

Rather than trying to learn directly over knowledge
graphs, we could also first translate them into a more-
manageable form for which we already have many
methods available. Specifically, we can try to find fea-
ture vectors for each vertex in the graph that repre-
sents an instance—an instance vertex—in our train-
ing data. We will briefly discuss two prominent exam-
ples that use this approach: substructure counting and
RDF2Vec. Clearly, these methods fall short of the ideal
of end-to-end learning, but they do provide a source of
inspiration for how to manage the challenges posed in
the previous chapter.

5.1.1. Substructure counting
Substructure counting graph kernels [dVdR15], are a
family of algorithms that generate feature vectors for
instance vertices by counting various kinds of sub-
structure that occur in the direct neighborhood of the
instance vertex. While these methods are often referred
to as kernels, they can be used equally well to gener-
ate explicit feature vectors, so we will view them as
feature extraction methods here.

The simplest form of substructure counting method
takes the k-neighborhood around an instance vertex,
and simply counts each label: that is, each edge la-
bel, and each vertex label. Each label encountered
in the neighborhood of an instance vertex then be-
comes a feature, with its frequency as the value. For in-
stance, for each e-mail in our example dataset (Fig. 4),
the feature space consists of at least one sender (e.g.,
from_Mary: 1), one main recipient (e.g., to_John:
1), and zero or more other recipients (e.g., cc_Pete:
0 and bcc_Kate:0).

More complex kernels define the neighborhood
around the instance vertex differently (as a tree, for
instance) and vary the structures that are counted to
form the features (for instance, paths or trees). The
Weisfeiler-Lehman (WL) graph kernel [SSL+11] is
a specific case, and the WL algorithm is the key
to efficiently computing feature vectors for many
substructure-counting graph methods.

5.1.2. RDF2Vec
The drawback of substructure-counting methods is that
the size of the feature vector grows with the size of the

10

data. RDF2Vec [RP16] is a method which generates
feature vectors of a given size, and does so efficiently,
even for large graphs. This means that, in principle,
even when faced with a machine learning problem on
the scale of the web, we can reduce the problem to
a set of feature vectors of, say, 500 dimensions, after
which we can solve the problem locally on commodity
hardware.

RDF2Vec is a relational version of the idea behind
DeepWalk [PARS14], an algorithm that finds embed-
dings for the vertices of unlabeled graphs. The prin-
ciple is simple: extract short random walks starting at
the instance vertices, and feed these as sentences to
the Word2Vec [MCCD13] algorithm. This means that
a vertex is modeled by its context and a vertex’s con-
text is defined by the vertices up to d steps away. For
instance, in our example dataset on customer transac-
tions (Fig. 6), a context of depth 3 allows RDF2Vec to
represent each transaction via chains such as

transaction_X → ingredients_X → ingredient_Y
transaction_X → ingredients_X → ingredient_Z

For large graphs, reasonable classification perfor-
mance can be achieved with samples of a few as
500 random walks. Other methods for finding embed-
dings on the vertices of a knowledge graph are TransE
[BUGD+13] and ProjE [SW16].

5.2. Internal graph representation

Both the WL-kernel and RDF2Vec are very effective
ways to perform machine learning on relational knowl-
edge, but they fall short of our goal of true end-to-
end learning. While these methods consume heteroge-
neous knowledge in the form of RDF, they operate in a
pipeline of discrete steps. If, for instance, they are used
to perform classification, both methods first produce
feature vectors for the instance vertices, and then pro-
ceed to use these feature vectors with a traditional clas-
sifier. Once the feature vectors are extracted, the error
signal from the task can no longer be used to fine-tune
the feature extraction. Any information lost in trans-
forming the data to feature vectors is lost forever.

In a true end-to-end model, every step can be fine-
tuned based on the learning task. To accomplish this,
we need models capable of directly consuming knowl-
edge graphs and which can hold internal representa-
tions of them. We next briefly discuss two prominent
models that employ this approach: tensors and graph
convolutional networks.

Figure 7. Representing statements as points in a third-order tensor.
Two statements are illustrated: s1 and s2, with s2 = John likes
Jurassic_Park

5.2.1. Tensor representation
A tensor is the generalization of a matrix into more
than two dimensions, called orders. Given that knowl-
edge graph statements consist of three elements, we
can use a third-order tensor to map them: two orders
for entities, and another order for properties. The in-
tersection of all three orders, a point, will then repre-
sent a single statement. This principle is depicted in
Figure 7. As an example, let i, j, k be the indices of a
tensor T used to represent our dataset on movie rec-
ommendations (Fig 5). If now T[i] = John, T[j] =
Jurassic_Park, and T[k] = likes, then intersection
T[i, j, k] will constitute the statement John likes Juras-
sic_Park.

A tensor representation allows for all possible com-
binations of entities and properties, even those which
are false. To reflect this, the value at each point holds
the truth value of that statement: 1.0 if it holds, and 0.0
otherwise. In that sense, it is similar to an adjacency
matrix.

To predict which unknown statements might also be
true, we can apply tensor decomposition. Similar to
matrix decomposition, this approach decomposes the
tensor into multiple second-order tensors by which la-
tent features emerge. These tensors are again multi-
plied to create an estimate of the original tensor. How-
ever, where before some of the points had 0.0 as value,
they now have a value somewhere between 0.0 and 1.0.

This application of tensor decomposition was first
introduced as a semantically-aware alternative [FSSS09]
to authority ranking algorithms such as PageRank and
HITS, but gained widespread popularity after being
reintroduced as a distinct model for collective learn-
ing on knowledge graphs [NTK11]. Others have later
integrated this tensor model as a layer in a regu-
lar [SCMN13] or recursive neural network [SPW+13].

11

5.2.2. Graph Convolutional Neural Networks
Graph Convolutional Networks (GCN) strike a bal-
ance between modeling the full structure of the graph
dynamically, as the tensor model does, and modeling
the local neighborhood structure through extracted fea-
tures (as substructure counting methods and RDF2Vec
do). The RGCN used the graph structure of the data
to inform the topology of a neural network, allowing
information to propagate along the edges of the graph
with each layer of the neural network.

The Relational Graph Convolutional Network (RGCN)
introduced in [SKB+17], and the related column net-
works [PTPV17] are relatively straightforward trans-
lation of the graph-convolutional network [KW16,
BZSL13] to the domain of knowledge graphs. We will
briefly explain the basic principle behind GCNs, to
give the reader a basic intuition of the principle.

Assume that we have an undirected graph with N
vertices, with a small feature vector x for each vertex.
We can either use the natural features of the vertex in
the data, or if the data does not label the vertices in any
way, we can assign each vertex i a one-hot vector7of
length N. For this example, we will assume that each
vertex is assigned a random and unique color, repre-
sented by a vector of length 3 (a point in the RGB color
space).

Let x0 be the color of vertex i. We define xk as
the mixture of the colors of all vertices in the graph,
weighted by the probability that a length-k random
walk from vertex i ends up in each vertex. If X0 is
the N by 3 matrix containing all original vertex fea-
tures we can define this principle mathematically as
Xk+1 = AXk, where A is the normalized adjacency
matrix of graph G. If we start with one-hot vectors in-
stead of colors, xk becomes a probability vector with
xk

j the probability that a random walk of k steps from
vertex i ends up in vertex j.

For most graphs, xk converges with k to a single vec-
tor independent of the starting vertex. This gives us a
specific-to-generic sequence of representations for ver-
tex i: x0 is too specific, and xk is too generic. Some-
where in-between, we have a good representation, ex-
pressing both similarities and differences.

The GCN model (Fig. 8) uses these ideas to create a
differentiable map from one vector representation into
another. We start with a matrix of one-hot vectors X.
These are multiplied by A, and then translated down

7A vector u representing element i out of a set of N elements: u is
0 for all indices except for ui, which is 1.

to a lower dimensional feature space by a matrix W.
W represents the “weights” of the model; the elements
that we will modify to fit the model to the data. The
result is then transformed by a nonlinearity σ (com-
monly a linear rectifier) to give us our intermediate
representations H:

H = f σW(X) = σ(AXW).

Row i of matrix H now contains a feature vector of
length 16, describing vertex i.

To create a classifier with M classes, we normally
compose two such "layers", giving the second a soft-
max8restriction on the output vectors. This gives us a
length-M probability vector y for each vertex, repre-
senting the classification.

Thus, the complete model becomes

Y = f softmax
V (A f σW(AXW)V) ,

where X is the identity matrix (i.e. a stack of one-hot
vectors for each vertex), and Y is an N×M matrix with
Yi j the probability that vertex i has class j. We then
learn the weights V and W by minimizing the cross-
entropy between the training examples and the corre-
sponding rows of Yi j through gradient descent.

For the RGCN model, we have one adjacency ma-
trix per relation in the graph, one for its inverse of each
relation, and one for self-connections. For a more com-
plete description, see [SKB+17].

Like RDF2Vec, the RGCNs learn fixed-size inter-
mediate representations of the vertices of the graph.
Unlike RDF2Vec, the transformation to this represen-
tation can use the error signal from the next layer to
tune its parameters. The price we pay is that these
models are currently much less scalable than alterna-
tives like RDF2Vec.

6. Conclusion

When faced with heterogeneous knowledge in a tra-
ditional machine learning context, data scientists craft
feature vectors which can be used as input for learn-
ing algorithms. These transformations are performed
by removing, and reshaping data, and can result in the
loss of information and accuracy. To solve this prob-
lem, we require end-to-end models which can directly

8This ensures that the output values for a given node always sum
to one.

12

data one-hot vectors X
hidden

representations H class probabilities target

tra
in

in
g

 d
a

ta
te

s
t d

a
ta

σ(AXW) softmax(AHV)

Figure 8. The Graph Convolutional Neural Network. Vertices are represented as one-hot vectors, which are translated to a lower-dimensional
space from which class probabilities are obtained with a softmax layer.

consume heterogeneous knowledge, and a data model
suited to represent this knowledge naturally. We argue
that the knowledge graph is a suitable data model for
this purpose.

In this paper we have argued—using three run-
ning examples—for the potential of using knowledge
graphs: a) they allow for true end-to-end-learning by
removing the need for feature engineering, b) they sim-
plify the integration and harmonization of heteroge-
neous knowledge, and c) they provide a natural way to
integrate different forms of background knowledge.

The idea of end-to-end learning on knowledge
graphs suggests many research challenges. These in-
clude coping with incomplete knowledge, (how to fill
the gaps), implicit knowledge (how to exploit implied
information), heterogeneous knowledge, (how to pro-
cess different data types), and differently-modelled
knowledge (how to deal with topological diversity).
We have shown how several promising approaches al-
ready address some of these challenges.

The question may rise whether we are moving the
goalposts. Where data scientists were previously faced
with the task of creating feature vectors from hetero-
geneous sources of data, we are now asking them to
create a knowledge graph instead. Why should they

bother? We do not claim that the effort will be re-
duced. We do, however, offer several other reasons to
opt for knowledge graphs. Our main claim, as argued
throughout this paper: the translation from the origi-
nal knowledge to knowledge graphs does not remove
any information. We are presenting our learning mod-
els with the whole of our heterogeneous knowledge or
as close a representation as we can make. Relatedly,
the knowledge graph is task-independent: once cre-
ated, the same knowledge graph can be used for many
tasks, even those beyond machine learning. Finally, be-
cause of this re-usability, a great deal of data is already
available in knowledge graph form.

End-to-end learning models that can be applied to
these graphs off-the-shelf will provide further incen-
tives to knowledge engineers and data owners to pro-
duce even more data that is open, well-modeled, and
interlinked. We hope that in this way, the Semantic
Web and Data Science communities can complement
and strengthen one another in a positive feedback loop.

References

[AMB+] A Abele, JP McCrae, P Buitelaar, A Jentzsch, and
R Cyganiak. Linking open data cloud diagram.

13

http://lod-cloud.net. Accessed: 2017-03-01.
[Bot] Leon Bottou. Two big challenges in machine learning.

http://icml.cc/2015/invited/LeonBottouICML2015.pdf.
Accessed: 2017-03-01.

[BUGD+13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko. Trans-
lating embeddings for modeling multi-relational data.
In Advances in neural information processing sys-
tems, pages 2787–2795, 2013.

[BZSL13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and
Yann LeCun. Spectral networks and locally connected
networks on graphs. CoRR, abs/1312.6203, 2013.

[DSS93] Randall Davis, Howard Shrobe, and Peter Szolovits.
What is a knowledge representation? AI magazine,
14(1):17, 1993.

[dVdR15] Gerben Klaas Dirk de Vries and Steven de Rooij. Sub-
structure counting graph kernels for machine learning
from rdf data. Web Semantics: Science, Services and
Agents on the World Wide Web, 35:71–84, 2015.

[FSSS09] Thomas Franz, Antje Schultz, Sergej Sizov, and Stef-
fen Staab. Triplerank: Ranking semantic web data by
tensor decomposition. The Semantic Web-ISWC 2009,
pages 213–228, 2009.

[GMH13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. Speech recognition with deep recurrent neu-
ral networks. In Acoustics, speech and signal process-
ing (icassp), 2013 ieee international conference on,
pages 6645–6649. IEEE, 2013.

[HS95] Mauricio A Hernández and Salvatore J Stolfo. The
merge/purge problem for large databases. In ACM
Sigmod Record, volume 24, pages 127–138. ACM,
1995.

[KBV09] Yehuda Koren, Robert M. Bell, and Chris Volinsky.
Matrix factorization techniques for recommender sys-
tems. IEEE Computer, 42(8):30–37, 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[KW16] Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks.
CoRR, abs/1609.02907, 2016.

[LDH+90] B Boser LeCun, JS Denker, D Henderson,
RE Howard, W Hubbard, and LD Jackel. Handwritten
digit recognition with a back-propagation network. In
Advances in Neural Information Processing Systems.
Citeseer, 1990.

[Le13] Quoc V Le. Building high-level features using large
scale unsupervised learning. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE Interna-
tional Conference on, pages 8595–8598. IEEE, 2013.

[Low99] David G Lowe. Object recognition from local scale-
invariant features. In Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference
on, volume 2, pages 1150–1157. Ieee, 1999.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Efficient estimation of word representations in
vector space. CoRR, abs/1301.3781, 2013.

[Min] Paul Mineiro. Software engineer-
ing vs machine learning concepts.
http://www.machinedlearnings.com/2017/02/software-
engineering-vs-machine.html. Accessed: 2017-03-01.

[NG15] Thien Huu Nguyen and Ralph Grishman. Relation
extraction: Perspective from convolutional neural net-
works. In Proceedings of NAACL-HLT, pages 39–48,
2015.

[NTK11] Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. A three-way model for collective learning on
multi-relational data. In Proceedings of the 28th inter-
national conference on machine learning (ICML-11),
pages 809–816, 2011.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
Deepwalk: Online learning of social representations.
In Proceedings of the 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 701–710. ACM, 2014.

[PS16] Heiko Paulheim and Heiner Stuckenschmidt. Fast ap-
proximate a-box consistency checking using machine
learning. In International Semantic Web Conference,
pages 135–150. Springer, 2016.

[PTPV17] Trang Pham, Truyen Tran, Dinh Q. Phung, and Svetha
Venkatesh. Column networks for collective classifi-
cation. In Satinder P. Singh and Shaul Markovitch,
editors, Proceedings of the Thirty-First AAAI Confer-
ence on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA., pages 2485–2491.
AAAI Press, 2017.

[RP16] Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf
graph embeddings for data mining. In International
Semantic Web Conference, pages 498–514. Springer,
2016.

[SCMN13] Richard Socher, Danqi Chen, Christopher D Man-
ning, and Andrew Ng. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in neural information processing systems,
pages 926–934, 2013.

[SKB+17] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional
networks. arXiv preprint arXiv:1703.06103, 2017.

[SPW+13] Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
Christopher Potts, et al. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the conference on empirical meth-
ods in natural language processing (EMNLP), vol-
ume 1631, page 1642. Citeseer, 2013.

[SSL+11] Nino Shervashidze, Pascal Schweitzer, Erik Jan van
Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine
Learning Research, 12(Sep):2539–2561, 2011.

[SW16] Baoxu Shi and Tim Weninger. Proje: Embedding
projection for knowledge graph completion. arXiv
preprint arXiv:1611.05425, 2016.

	Introduction
	Use cases

	The knowledge graph
	Encode knowledge using statements
	Express background knowledge in ontologies
	Reuse knowledge between datasets

	Learning in a world of knowledge graphs
	Spam detection
	Movie Recommendation
	Market Basket Analysis
	The default data model?

	The challenges ahead
	Incomplete knowledge
	Implicit knowledge
	Heterogeneous knowledge
	Differently-modelled knowledge

	Current approaches
	Extracting feature vectors
	Substructure counting
	RDF2Vec

	Internal graph representation
	Tensor representation
	Graph Convolutional Neural Networks

	Conclusion
	References

