
Visualization Valorization 
Abstract 
Scientists from diverse backgrounds are joining the field of data science.  This leads to advances in 

data science being actualized in the context of many different domains. Conclusions from datasets 

using innovative algorithms is one obvious aspect but advances in data science can take on many 

different forms such as new methods for data interpretation, new data integration and processing 

technologies, or as will be the topic of this editorial, data visualization techniques. The parity and 

complementary relationship between all techniques provide ways to improve discovery and should 

be treated equally in terms of scientific reward. Here, the specific focus is on life science multi-omics 

data as an example but most of the remarks can be associated with visualization methods in 

general. From the perspective that visualization serves as an important method for shaping data 

science interpretations, this paper sets out some of the difficulties encountered in creating and 

valorizing new visualization implementations for multi-omics datasets. 

Benefits of visualization 
All fields and domains require the use and analysis of data; however, not all domain experts are 

statisticians or algorithm experts. The omics technologies (genomics, transcriptomics, proteomics, 

metabolomics, lipidomics, etc) have generated many multifactorial experiments that necessitate 
effective visual exploration by life science experts to successfully extract knowledge [1] [2] [3]. The 

challenge in practical terms is how to present the data at the right level of detail, in a cohesive, 

insightful manner. In general, transforming spreadsheet data into visual representations can facilitate 

new knowledge discovery [4].  The discovery often comes from seeing novel and unexpected 

patterns in data sets by visually interpreting data in a different way.  As there is only limited utility in 

seeing the expected, one often seeks out outliers, oddities, unusual events and patterns, places 

where the data do not match expectations [5].  

Human working memory has limited capacity and transient storage properties for simultaneous 

interpretation of multiple hypotheses and huge amounts of evidence linked together by numerous 

relationships [6]. Data for biological systems are organized as complex networks of molecular and 

functional interactions making the intuitive interpretation of multi-omics datasets difficult without help. 

Visual displays provide a method to extend the working memory capacity by establishing a 

placeholder for information patterns [7].  More evidence can be viewed in concert. Research can 

advance more quickly if the barrier to the effective exploration by any scientists is minimized. 

Therefore, insights from the emerging field of visual analytics [8], which specifically studies the role 

of visualization in the larger process of understanding and interpreting data, can bear significant 

rewards. Visual analytics methods have begun to be applied to studying the connection between 

visualization and analytical reasoning in systems biology [8] [9].  

Characteristics of the data 
In the field of multi-omics data assemblage and evaluation, common data characteristics surface; the 

complexity of the data is related to multidimensionality and multivariate nature, where variance in the 

measurements can be attributed to other numerous explanatory variables and possible confounders. 

The data complexity and the multitude of questions to be addressed means static visualization is 

often insufficient. The user needs to explore the data interactively in order to assess a wide range of 

questions. In addition to the high dimensionality of the data, information overload, data 

interconnectivity, and pattern extraction also pose major hurdles to developing effective 



visualizations [10].  Here, one of the main difficulties lies in the design of graphical layouts that 

contain the complete information space [11]. 

For intuitiveness and usefulness, it is likely that there is no one generic layout will cover the 

requirements needed to answer the range of biological questions. Often the better-known 

representations, bar and pie charts, histograms, line and scatter plots, are used to carry out simple 

statistical visualization and to report trends and summaries [12]. Node-link tree and graph 

visualizations, in both 2D and 3D, can display hierarchically structured data such as ontologies and 

networks. Other visualization types include heat maps and matrices; parallel co-ordinates [13]; 

timeline and topology plots; map and landscape views that build on the metaphor of cartography; 

space-filling visualizations such as tree maps, rose diagrams, icicle, bubble and sunburst plots; 

iconography, including star and glyph plots [14] [15] [16]. Specific use cases for omics data may 

require visualization such as parallel co-ordinates, which are very well suited to high-dimensional 

data, while others such as the pie charts and scatter plots can be used when examining only a small 

number of dimensions simultaneously. Most novel visualization applications often employ or build on 

some of the simpler, well-known techniques that are organized together in innovative combinations. 

Overall, the choice of visualization for multi-omics data needs to reflect the complex organization of 

biological phenomena and, importantly, the user must have their own internal representation of the 

biological phenomena in order to reason about it while exploring the data. In general, experts will 

have built up from extensive experience a set of patterns for exploring the important elements found 

in their data and these must be taken into account when providing a visualization [17]. 

The analytical process to build visualizations 
Modelling how a scientist thinks about biology plays a big role on how people interpret and interact 

with an interface. The application of human–computer interaction (HCI) methods enable a more 

principled scientific approach to solve the difficult problems of omics visualization. Scientists want to 

answer questions with their datasets. While detecting trends is important, ultimately researchers 

want to see the causal relationships of how A has an effect on B. Therefore, the first goal is to 

understand life scientists’ usage of multi-omics data to answer specific questions through open-

ended and informal interviews and to generate a comprehensive list of requirements for any 

interface. The second goal is to evaluate several existing visualization systems and to understand 

some common approaches used by contemporary systems to address the user established 

requirements [18]. It is helpful to examine the users’ perception of these existing systems to suggest 

benefits and drawbacks as compared to the list of derived requirements. Generally in HCI, analysis 

of requirements starts with observing current work practices of users. Users are either observed as 

they carry out their tasks or are engaged in discussions related to their work. Results of these 

contextual or participatory observations are scenarios that help developers understand how users 

will eventually use a system and its impacts [19].  Based on these studies, it is possible to identify 

critical areas of design that are the most important with respect to user requirements and plan a 

research agenda to seek out most effective solutions to the scientists’ needs.  

Quantitating the use of visualization in the scientific process 
The power and value of visualization is often described by its ability to foster insight into and improve 

understanding of data, which then should lead to enabling intuitive, effective knowledge discovery 

and analytical activity. This can partly be achieved by removing the cognitive load encountered in 

managing the large amounts of complex, heterogeneous data, which are commonly delivered by 

multiple omics experiments [20].  More challenging is that knowledge discovery is seldom an 

instantaneous event, but requires studying and manipulating the data repetitively from multiple 

perspectives and possibly using multiple tools. Streamlining repetitive tasks may be a benefit that is 

linked to discovery but the contribution of this may not be easily traceable back to the visualization. 



The introduction of data visualization tool may trigger changes in work practices, exacerbating the 

problem of identifying their contribution to discovery. One measure of success for a visualization 

could be that users can formulate and answer questions they didn’t anticipate having before looking 

at the visualization [21]. If users need to look at the same data from different perspectives and over a 

long time, they must be motivated and actively intellectually engaged in experimenting with the 

visualization tool [22]. Conducting longitudinal studies that record each and every finding by the 

users over a longer period of time to see how visualization tools influence knowledge acquisition can 

be very valuable [23] [24]. These studies should be conducted with scientists analyzing their own 

experimental results for the first time. Several studies [25] [26] [27] [28] have conducted such 

longitudinal studies with evaluations that included frequent user interviews, diary studies, and 

‘Eureka’ reports. Overall, measuring the impact of visualizations on discovery is a difficult task but a 

range of evaluation methods are being tested to measure success [21].  

Users adopt applications that have intuitive interfaces and deliver appropriate context and 

personalization via a rich end-user interaction. This usually means that the application has been 

perfectly simplified. The tasks being performed via the interface are streamlined. Irrelevant features 

or uncertainty does not distract user focus over where to click for the information for answering the 

next question. Real-time interactive features bring engaging, time-sensitive, or contextual biological 

information to the forefront [29]. The mental model that users build up whilst interacting feels natural 

to the way they think without realizing it. Creating this type of visualization takes time, much trial and 

error, and an attention to psychological as well as the scientific detail. 

Finally, Dork et al. [30], have outlined an approach for HCI that promotes; disclosure of bias and 

decisions made about the visualization (disclosure), enabling of multiple interpretations (plurality), a 

range of possible ways to interact with the visualization (contingency), and allowing users to derive 

their own hypotheses (empowerment). The principles of disclosure and plurality largely address 

insight by promoting comprehensible representations, while contingency and empowerment are 

guiding principles driving impact through flexible interactions and empowering user experiences [30]. 

Dangers when creating visualizations 
The majority of visualizations are to some extent subjective and interpretive. No visualization 

captures all aspects of a particular dataset from all possible perspectives. Each visualization 

encompasses some assumptions of the developer and it is important to avoid potentially biasing 

users with a particular line of thought [31]. With high dimensional data there may be many 

reasonable approaches to analyzing it. The scientist’s perception is biased towards interpretation of 

information into existing (internal) models of biology and existing expectations. However, human 

reasoning is subject to a variety of well-documented heuristics and biases [32] that cause people to 

deviate from how they should rationally make decisions.  Therefore, a major challenge to any 

scientist is to be open to new and important insights while simultaneously avoiding being misled by 

the tendency to see structure in randomness and to find meaningful patterns in meaningless noise, 

such that confirmation bias leads to false conclusions [33].  There appears to be little guidance and 

material that teaches people how to do actual exploratory analysis work [34], let alone with an 

understanding of their biases.  People are fixated with complex statistical models and blindly 

applying machine learning to data problems when in fact what we need to improve and perfect is our 

ability to reason with data and make rational decisions under conditions of uncertainty.  

Complementarily, visualizations are challenged to incorporate a notion of confidence or certainty 

because the factors that influence the certainty or uncertainty of data vary with the type of 

information and the type of decisions being made [35]. Statisticians see the world in the light of 

confirmatory analysis and regard exploration as an inferior approach to analysis. Visualization 

researchers, too busy building innovative implementations to cope with the new data overload, have 



done little to teach users how to run actual data exploration methods. Part of the solution to this 

conundrum may depend on the visualization researchers adopting the philosophy that their 

implementations must teach as well as systematically guide exploratory data analysis in ways that 

make the process as effective, reliable, and rational as possible. 

Visualization as a valuable asset to be rewarded 
As discussed above, many aspects must be taken into consideration when developing an interface.  

A good multidimensional omics visualization tool must maximize simplicity, familiarity, intuitiveness, 

effectiveness, data correctness [36] as well as minimize bias from both the developer and end user.   

Even when doing all this, visualization research can be overlooked and not interpreted as a valuable 

publishable scientific effort.  Clearly, visualizations are necessary for the adoption, use, and efficacy 

of uptake of computational methods in data science. Major efforts have been made in recent years 

to create visualization tools that can extract useful knowledge from the vast amount of data 

generated by high-throughput technologies [1] [2] [3]. However, more progress is required to create 

new tools to meet the changing needs of the field. Incremental improvements of visualization 

software is highly important, but requires great effort from developers for low scientific reward when 

compared to the development of new methods. There must be acknowledgement that the 

investment to the study and effort dedicated to the development and maintenance of new tools, as 

well as user training and support, will be adequately compensated to encourage advancement of the 

field.  Long-term investment and funding are needed to guarantee the maintenance, improvement, 

and evolution of visualization tools beyond their first publication [1]. 

Summary 
As the size and complexity of omics datasets continues to increase, the development of user 

interfaces and interaction techniques that expedite the process of exploring that data must receive 

new attention. Novel approaches also need to take into consideration the technological challenges 

and opportunities given by new interaction contexts, ranging from mobile, touch [37] [22], and 

gesture interaction to visualizations on large displays, and encompassing highly responsive web 

applications. Regardless of the speed of rendering and context, it is important to coherently organize 

the visual process of exploration to give insight about the data to a user and address psychological 

aspects of the user experience. Measures to access impact of visualizations remain a challenge [38] 

and so it follows valorization is not proportional to the effort put in for development. Overall, to quote 

Nils Gehlenborg [9]: “The challenge is to create clear, meaningful and integrated visualizations that 

give biological insight, without being overwhelmed by the intrinsic complexity of the data”. 
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