
March 2017

Maintaining intellectual diversity
in data science

Richard P MANN a,1 and Olivia WOOLLEY-MEZA b

a Department of Statistics, School of Mathematics, University of Leeds, UK
b Computational Social Science, ETH Zurich, Zurich, Switzerland

Abstract. Data science is a young and rapidly expanding field, but one which has
already experienced several waves of temporarily-ubiquitous methodological fash-
ions. In this paper we argue that a diversity of ideas and methodologies is crucial for
the long term success of the data science community. Towards the goal of a healthy,
diverse ecosystem of different statistical models and approaches, we review how
ideas spread in the scientific community and the role of incentives in influencing
which research ideas scientists pursue. We conclude with suggestions for how uni-
versities, research funders and other actors in the data science community can help
to maintain a rich, eclectic statistical environment.
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1. Introduction

In 2012 the Harvard Business Review declared Data Scientist to be the ‘sexiest job of
the 21st century’ [8]. The last five years have borne out that pronouncement. As illus-
trated in Figure 1, global interest in data science has increased exponentially, at least as
measured by the number of related searches on Google. The has been a huge increase in
the number of universities offering courses in ‘data science’ or ‘data analytics’, led by
student demand in response to a rapid growth in the number of well-paid ‘data scientist’
job positions. Doubtless, some of this is a relabeling of previously extant activities; much
of what we teach our data analytics students has previously been covered in statistics and
machine-learning programs, while some companies advertising data scientist positions
would have once advertised for statisticians. Nonetheless, within these fields there has
also been a substantial increase in activity. To illustrate, the Annual Conference on Neu-
ral Information Processing Systems (NIPS), regarded as the leading venue for publish-
ing and discussing research in machine-learning, has seen huge year-on-year increases
in registrations over the past five years, with nearly 4000 delegates attending in 2015.
Overall, it is clear that there has been a step change in the number of individuals and
organizations involved in performing sophisticated analyses of large and complex data.
And there is no sign yet that this growth in data analytics in industry, government and
academia is slowing down. Within scientific research, this huge increase in data analytic
capabilities and activity presents us with an important question: how can we ensure that
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Figure 1. The monthly number of searches for ‘data science’, as extracted from Google Trends, between
October 2006 and October 2016. Counts are normalized to a maximum of 100 over the time period. The vertical
dashed line indicates the date on which The Harvard Business Review declared Data Scientist to be ‘’the sexiest
job of the 21st century’.

all this work is creating genuine new knowledge? It may seem natural to assume that if
more people are trained to analyze data using exciting new tools like Random Forests,
Deep Neural Networks and Gaussian Processes, that we should expect more insightful,
robust analyses of data to result, and therefore obtain more knowledge from our scien-
tific endeavors. However, in many cases these tools are being applied to data that is sta-
tistically troublesome: observational data, often unstructured, subject to strong selection
biases, without controls and with many interacting factors potentially affecting the out-
come of interest. Examples include text and behavior extracted from social media [31],
hospital admission data [20], and store loyalty card records. With rare exceptions [17]
these do not permit anything resembling the classic randomized, controlled trials that are
the gold standard of causal inference. Moreover, many methods typically employed in
machine-learning and industrial data analytics are primarily focused on predictive accu-
racy, rather than inference and interpretation of underlying causal structures. Finally, and
importantly for this perspective, data analytic techniques are subject to ‘bubbles’ of in-
terest with the scientific community. In the 1980’s artificial neural networks were firmly
at the forefront of machine-learning and artificial intelligence research. The popularity of
these waned in 1990’s and 2000’s in favor of Gaussian processes [27], Random Forests
[6] and other non-parametric methods, before a resurgence led by new techniques for
training many-layered neural networks, termed ‘Deep Learning’, in the 2010’s. These
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waves of interest in one technique or another have a pronounced effect on the collective
scientific enterprise, as they reduce the diversity of statistical models and approaches be-
ing used to investigate similar data sets. As such, any problems inherent to a single type
of statistical model can be amplified if that technique becomes popular within the com-
munity. Meanwhile, the particular advantages of other methods can become lost as their
popularity wanes. It is far from clear that the popularity of one method over another is
strictly related only to its analytical power; instead there are strong undercurrents of fash-
ion and conformism in the methods researchers are expected to use. Furthermore, con-
formisms and fashion are further magnified by network effects that give a small number
of researchers and methods exponentially more visibility.

Lack of diversity in analytical approach is a missed opportunity. There is substan-
tial cross-disciplinary evidence for the important role diversity plays in collective intel-
ligence [33,24]: experimentally in human [37] and animal behavior [2], in theoretical
models of collective behavior [38,14,21], and specifically in the successes of statisti-
cal ensemble models. Ensemble models use combinations of multiple, often very many,
different statistical models to perform data analysis. For example, the popular Random
Forests model [6] is an ensemble model: many distinct decision tree models are gener-
ated from a single data set, before being aggregated to make predictions from new data.
The advantage of an ensemble approach is that each model within the ensemble may
identify and utilize different features and patterns within the data. Aggregated together,
the errors made by each model cancel out to some degree, resulting in a collectively ac-
curate prediction. The power of aggregating distinct models for a given data set became
evident to many at the conclusion of the Netflix Prize competition [4]. This competition
set participants the challenge of improving on the accuracy of Netflix’s own algorithm
for predicting future film watching choices by at least 10%. For some time no single
team working with one statistical model was able to achieve this mark. The competition
was eventually concluded when several teams came together, combining their different
models so as to improve their overall predictions [5,34,26]. This outcome demonstrated
that, in statistical modeling, the search for one ‘true’ or ‘best’ model is often misguided.
Instead, as a community we should seek the best combination of approaches, especially
when faced with complex, multi-dimensional phenomena. Since it is rarely possible or
desirable to centrally coordinate a search for a good collection of statistical models, we
must instead consider how the incentives individuals face and the networks they inhabit
influence the type and variety of statistical research that they perform.

1.1. Collective wisdom, collective madness

The ability of a group to exhibit intelligence superior to any of its constituent members
is well established. One of the first to study how collective intelligence emerges was
Condorcet, who considered the case of an idealized jury [9]. Consider n jurors, tasked
with deciding whether a defendant is guilty or innocent. Each juror is individually only
accurate in making this determination with a relatively low probability, say 60%. That
is little better than guessing at random. However, assuming that the jurors make up their
minds independently, Condorcet showed that collective group decision (determined by a
simple vote) is far more likely to be accurate than a single individual, growing quickly
with the number of jurors, n. Francis Galton made similar observations regarding the ac-
curacy of collective estimation [11], which is ultimately predicated on the Law of Large
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Numbers: independent errors made by many individuals tend to cancel out in aggregate,
making the group much “smarter” than a single individual. As noted above, these early
observations have been replicated since within data science, in ensembles of models and
research teams.

However, collective wisdom is contingent on diversity and independence between
members of a group [33]. The counterpoint to the collective wisdom of Condorcet’s ide-
alized jury is the collective madness we see when individuals are too strongly influenced
by the collective mood. This is exhibited in famous examples of damaging group think,
such as Tulip Fever, the South Sea Bubble and other stock market booms and busts. We
may also observe on a daily level in our own lives instances where social conformity
and peer pressure lead individuals and groups to behave sub-optimally. The community
of researchers in data science, statistics, machine learning and artificial intelligence is
also subject to social forces that discourage a diversity of approaches. Certain statistical
models become fashionable, are accepted as the new big thing and are soon ubiquitous.
Senior researchers train their students in the methods that they know. At any one time,
certain types of model are, generally, more accurate and/or efficient than others, and re-
searchers tend to gravitate towards these. The culture of benchmarking one’s new method
against the state of the art in terms of accuracy necessitates that researchers utilize the
best currently available methodologies if they wish to get their work published. Previous
research has shown that when individuals are rewarded solely on the basis of the accu-
racy of their individual predictions, this tends to lead to a severe lack of diversity and a
subsequent catastrophic reduction in collective wisdom, putting the whole collective on
a par with a single individual [14,21].

In the light of these incentives and mechanisms that discourage diversity, and in the
knowledge that diversity is critical to the collective wisdom of any community, it be-
hooves us to consider carefully how ideas spread in the research community, and how the
incentives and structures inherent to the scientific community can be used to encourage
a wider diversity of research approaches.

2. Understanding the spread of ideas

Diverse ideas and methods are combined through a decentralized emergent process, as
scientists become aware of information, communicate it, “adopt” or use these ideas and
create new ones. This process is driven by the dynamic and multi-layered structure of
interactions between scientists and the mechanisms via which ideas are taken up. Here
we will discuss insights from the study of complex networks [3,23,10] and spreading
processes on these networks [16,25] that can shed light on how to structure scientific in-
teractions in a way that sustains a diverse pool of methods in data science and encourages
researchers to combine and integrate them in productive ways.

2.1. Networks of scientific interaction

Analyzing the networks of scientific can reveal important information about the cur-
rent divisions between different methods and the groups of researchers that use them.
Furthermore, these network structures also yield a better understanding of the potential
for these methods to be better integrated through new interactions. There are many rich
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sources of data that have recently become available that can be used to characterize the
interaction of scientists in different contexts. For example, the Web of Science or other
bibliometric sources can be used to construct citation networks. Although this is only an
imperfect measure of scientific ideas and how they spread, there is quantitative evidence
that scientific ideas “spread” through citations [18] and that these networks can be used
to predict their spread [30]. Using bibliometric data we can also extract the structure
of scientific collaborations and co-authorship networks. These networks can be used to
understand the potential for spread of ideas and methods between researchers. Recent
analysis shows that individuals are more likely to be cited by those closer to them in a
network of scientific co-authorships [29]. There are of course other, less formal forms of
scientific interaction which are becoming easier to measure. For example, measurements
of face-to-face interactions at conferences [32] and exchange and “friendship” on online
social platforms such as Twitter and ResearchGate can also be used to map the structure
of interactions between scientists.

All of these quantifications of scientific interaction contain different information
at different temporal resolutions.However, two pervasive characteristics are community
structure and a high inequality, or broad distribution of the centrality (most basically
measured through connectedness) of different network components, whether they be re-
searchers or methods.

2.2. Community structure, individual centrality and integrating diverse methods

Modules or communities are, intuitively speaking, the sub units of a network made up of
individuals (e.g. researchers or methods) that interact more strongly with each other than
with the rest of the network. One interesting approach to integrating diverse perspectives
would be to combine methods from distant communities through ensemble methods.

Taking a more decentralized long-term approach, communication channels between
researchers operating in these distant communities also need to be established. However,
there are many reasons to be weary of a naive approach which simply encourages more
unstructured interaction. To retain useful diversity, interaction across communities must
not compromise an basic degree of isolation and independence between communities.

The importance of community structure is better understood if we consider the
mechanisms that seem to govern the spreading of ideas and innovations. The best studied
model is fractional threshold contagion [35], where the probability that an individual
becomes “infected” through an infective contact is dependent on the fraction of other
infected individuals that it interacts with (in network terms, its neighbors). This rule cap-
tures the idea that adoption is a social process: there is pressure to conform, or there are
added synergistic benefits to adopting if others whom we interact with adopt. Given such
a process, communities serve as incubators for new ideas, through local reinforcement.
But communities also have the opposite effect slowing the adoption ideas that originate
outside of them. Increasing connectivity randomly throughout a network could decrease
the diversity of ideas, allowing only the most contagious, or those that start in the most
well connected places, to persist.

Theoretical work indicates that networks that have modular structure but sustain
intermediate levels of connectivity between modules provide optimal conditions for the
global uptake of ideas [22]. Furthermore, recent work shows that the most effective way
to transfer ideas between communities is through connections made between individuals
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that are more peripheral rather than through those better connected [15] (see Fig. 2 for a
schematic of the different network topologies we discuss).

The dynamics of contagion through a fractional threshold mechanisms are driven
by the inverse relationship between the centrality of an individual (according to network
degree) and it’s susceptibility to ideas. This highlights the key role that the more periph-
eral individuals play in the sustaining a rich and diverse set of scientific ideas. The sen-
sitivity of peripheral researchers becomes even more valuable if we look beyond models
that only consider one idea spreading in isolation. Ideas are part of an ecosystem, and
they interact with each other through their scientific “hosts”, akin to the dynamics of co-
infection and super-infection studied in evolutionary epidemiology [1]. Competition for
limited human time and attention is the most studied interaction [36,12,13]. However,
there are also synergistic effects between ideas. Most obviously, ideas that are similar and
consistent each other are more likely to be adopted by the same scientist. These interac-
tion effects accentuate rich-get-richer feedbacks in the system and thus reduce diversity.
Furthermore, since the most established scientists tend to be the most connected, they
experience more information overload and therefore the competition for their attention
is greater, and at the same time, they are less likely to adopt novel ideas that contradict
the establishment that has secured their privileged position.

Figure 2. Three different network topologies that can sustain different diversity of ideas: All networks exhibit
stratification, that is, most individuals have a low degree but there is a small number of highly connected
individuals. The network on the left has no community structure. This network cannot sustain much diversity.
The network in the middle has a strong community structure with inter-community connections through central
individuals. In this network the diverse ideas that spark in the different communities cannot spread globally. The
network on the right has strong community structure, but with inter-community connections through peripheral
individuals. This is the topology that best sustains the global penetration of diverse ideas that are fostered
locally.

2.3. The role of incentives

The type of research that individuals pursue and the methods they use are influenced by
their peers and networks, as we have seen above. However, the decisions scientists make
in this regard should not be viewed simply as a passive result of community pressure.
Instead, these decisions are active choices that are made both to satisfy the researcher’s
curiosity, but also to achieve their professional objectives such as promotion, funding
and recognition. How scientists are rewarded for their research will affect, in positive or
negative ways, the diversity of ideas and therefore the collective wisdom of the scientific
community. Scientific ideas and publications exist in a quasi-market, where some are
accorded a high value and attract high rewards. A typical researcher is unlikely to pursue
highly novel but unpopular ideas if there is no potential for them to be recognized through



March 2017

the awarding of prizes, promotion or further research funding if those ideas later turn
out to be fruitful. Likewise, if rewards are systematically allocated to incremental and
low-risk research, this will tend to attract more researchers to these areas.

When individual rewards are oriented solely towards simple criteria of success this
tends to suppress diversity and risk-taking [14,21]. Conversely, there is recent evidence
that useful diversity can be encouraged by rewarding accurate minority predictions [21].
These are occasions on which an individual or a model predicts correctly, while the
majority of others predict incorrectly. This creates an incentive to focus on less exploited
sources of information, or more niche features of a data set, since the individual cannot
win any reward by simply imitating what the majority of others are already doing. For
the individual, this may make their model less accurate overall. But it makes their model
far more useful to the community, as it contributes additional information not already
presented by others.

Similar ideas are already applied in established methods of ensemble creation. For
example, the technique of Boosting [28] is a meta-algorithm for assembling ensembles
of weak classifiers that act as a strong classifier in aggregate. A common way to achieve
this is to iteratively add weak classifiers to an ensemble, re-weighting the data set under
consideration after each new classifier is added. Examples within the data that are cur-
rently poorly classified are given higher weights, while those which are already well clas-
sified are given lower weights. In this way, additional weak classifiers are ‘incentivized’
to focus on accurately classifying the examples that are currently poorly modeled.

3. Conclusion

Given the great uncertainty about the mechanisms driving information dynamics in sci-
ence, we have to be cautious in suggesting what interaction structures can best sustain di-
versity of methods in data science and their productive and eclectic integration. However,
some guiding principles are clear.

Diversity thrives in a network structure that allows communities to work in partial
isolation. Work carried out in the in the borders between communities and at the periph-
ery of the establishment can lead to important innovations, thus enough funding and other
forms of incentives need to be allocated to these regions. Detecting existing communities
of methods and promoting their integration is an opportunity to improve the power of
methods. Most straightforwardly, this scan be done through the ensemble methods we
have discussed.

Beyond planned combination of methods, connections that sustain interchange be-
tween separate communities, and from the periphery to the core of the research com-
munity are necessary. However. these connections must be well timed, since premature
competition with more established ideas can be counterproductive. Furthermore, the in-
dividuals in the core, who accumulate connections and prestige, are not necessarily the
most effective integrators. These individuals suffer from the most acute information over-
load and they have the most to lose when established approaches are overturned. Thus,
increasing connections between scientists working at the periphery, in communities that
are typically distant, could be a promising new way of fostering a diverse set of ideas
and integrating them for innovative science. There is also an important role for funders,
conference organizers and university hiring committees in protecting small, potentially
unfashionable research areas for the benefit of the wider scientific ecosystem.
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We also must not lose sight of the fact that the allocation of funding and other re-
wards is not simply a mechanism for enabling researchers with various interests, but also
acts as a driver of those interests. Most researchers wish for some degree of recognition
and reward for their work, and will gravitate to areas that offer this. By reforming rewards
to encourage diversity, for instance by explicitly favoring minority research ideas, we
can avoid wasteful and potentially damaging group think and maintain the rich variety
of data analytic approaches that has enabled the building of ensemble efforts.

Much research remains ahead of us. We need better mapping of the structure of
scientific interactions by aggregating information from the different sources available.
Of special interest is measuring and characterizing communities that capture the time-
varying structure of scientific interaction. This will enable a faster and more precise iden-
tification of the scientists and methods emerging in new communities and in community
boundaries. We also need to better understand the distinct roles that content and social
forces play in willingness to communicate and adopt ideas. This requires both a theo-
retical effort and more in depth and rigorous empirical validation and model selection.
The greatest challenge is perhaps in arriving at an understanding of the mechanisms that
drive productive combination and true innovation. The data and theories necessary to do
this are becoming available, and the information technologies necessary to implement
the insight garnered are also feasible. We could miss a big opportunity if we don’t invest
in this direction. Even worse, these same tools could lead to a decrease in diversity and
scientific productivity if we allow them to work unchecked. However, we must remember
the limits of predicting scientific innovation [7]. In contrast to the typical setting studied
in collective intelligence, scientific approaches cannot be evaluated entirely on their im-
mediate or short-term performance. As first postulated by Kuhn [19], paradigm chang-
ing ideas are accepted because of their yet unverified potential and because the social
dynamics support change. Inflexible and over-engineered incentives and communication
channels will obstruct dynamic and creative data science.
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[32] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, V. Colizza, L. Isella, C. Régis, J.-F. Pinton, N. Khanafer,
W. Van den Broeck, et al. Simulation of an seir infectious disease model on the dynamic contact network
of conference attendees. BMC medicine, 9(1):87, 2011.

[33] J. Surowiecki. The Wisdom of Crowds. Random House LLC, 2005.
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