
February 2017

Ten years of Stream Reasoning. Now
what?

Daniele DELL’AGLIO a,1, Emanuele DELLA VALLE b and

Frank VAN HARMELEN c and Abraham BERNSTEIN a

a Department of Informatics - University of Zurich
b DEIB - Politecnico di Milano.
c Vrije Universiteit Amsterdam.

Abstract. Stream reasoning studies the application of inference tech-
niques to data characterised by being highly dynamic. It can find appli-

cation in several settings, from Smart Cities to Industry 4.0, from In-
ternet of Things to Social Media analytics. This year stream reasoning

turns ten, and in this article we analyse its growth. In the first part, we

trace the main results obtained so far, by presenting the most prominent
studies. Looking at the past is useful to prepare for the future: in the

second part, we present a set of open challenges and issues that stream

reasoning will face in the next future.
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1. Introduction

Increasingly, applications require real-time processing of heterogeneous data

streams together with large background knowledge. Consider the following exam-

ples. Which electricity-producing turbine has sensor readings similar (i.e., Pearson
correlated by at least 0.75) to any turbine that subsequently had a critical failure

in the past year [54]? When a sensor on a drill in a oil-rig indicates that it is about

to get stuck, how long—according to historical records— can I keep drilling [53]?

Where am I likely going to run into a traffic jam during my commute tonight
and how long will it take, given current weather and traffic conditions [64,83,3]?

Who are the current top influencers that are driving the discussion about the top

emerging topics across all the social networks [50,8]?
Who should be asked to go exercising, given people’s past, possibly seden-

tary behaviour and allergies (accessed in a privacy-preserving manner) as well as

current weather conditions and pollution/allergen levels [31]?
To answer these queries a system must be able to:

1Corresponding Author: Daniele Dell’Aglio; E-mail: dellaglio@ifi.uzh.ch.
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R1. handle volume: a typical oil production platform is equipped with about
400.000 sensors; Facebook, as of February, 2017, has 1.86 billion of monthly
active users2, etc.

R2. handle velocity : sensors on a power generation turbine can easily generate
thousands of observations per minute; Instagram’s users, as of February,
2017, like on average 2.92 million post per minute3; etc.

R3. handle variety : a large variety of static and streaming data sources and
data management solutions exists in any domain. For instance, Milano has
deployed some 600 traffic light systems equipped with inductive loops in the
last 10 years: they use five different data formats, have different operational
conditions, etc. Similarly, in social media, each network has its own data
model and APIs.

R4. cope with incompleteness: sensors can run out of battery or networking links
can break; in social media part of the conversation may occur outside the
social network [7], or the APIs that are used to access the social stream may
have got a limited sampling rate.

R5. cope with noise: sensors can be imperfect, faulty, or out of its ideal opera-
tional range; Text can be worded in an ironic way and a sentiment mining
solution may be unable to detect it with 100% correctness.

R6. provide answers in timely fashion: answers should be generated within well-
specified latency bounds, which depend on the application scenario: the
detection of dangerous situations must occur within minutes (in near real-
time).

R7. support fine-grained information access: the issued query may require to
locate exactly a turbine, a means of public transportation, an agent in a
contact centre among thousands of similar ones.

R8. integrate complex domain models: social media analytics may require topic
models to make sense of a conversation; oil production control systems may
require to model operational and control processes; traffic monitors may
require rich background knowledge about topology, planned and unplanned
events to improve the accuracy of the analyses.

R9. understand what users want : the query should let users define analytics-
aware tasks such as Pearson correlation as a mean of similarity, or let specify
complex concepts such as traffic jam and top influencer user.

Ten years ago, no system was able to address all those requirements simulta-
neously. Data Stream Management Systems (DSMSs) and Complex Event Pro-
cessors (CEPs) [21] were two types of systems able to provide reactive fine-grained
information access in the presence of noisy data. DSMSs transform data streams
in timestamped relations (usually through a so-called window operator) and pro-
cess them with well known techniques such as relational algebras [6]. CEPs, in-
stead, look for patterns in the streams to identify when complex events occur [66].
These system where, however, unable to to access heterogenous data with com-
plex domain models and rich background knowledge. Other approaches, based

2See https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
Accessed on February, 2017.

3See https://blog.hootsuite.com/instagram-statistics/ Accessed on February, 2017.
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on the Semantic Web and in particular on scalable Ontology Based Data Access
(OBDA) [17], were starting to show that complex domain models can be used to
offer fine-grained information access to heterogeneous and incomplete datasets.
But these systems lacked the ability to provide reactive answers on data streams
and to handle noise.

Table 1. The requirements Stream Reasoning aims at covering and how DSMS, CEP and OBDA

cover them.

Requirement DSMS/CEP SemWeb Envisioned Stream Reasoning

R1: Volume 3 3 3

R2: Velocity 3 7 3

R3: Variety 7 3 3

R4: Incompleteness 7 3 3

R5: Noise 3 7 3

R6: Timely fashion 3 7 3

R7: Fine-grained access 3 3 3

R8: Complex domains 7 3 3

R9: What user want 3 7 3

Then, about ten years ago, a new research trend—Stream Reasoning [25]—
combining the above developments emerged around the idea [90] of:

Logical reasoning in real time on gigantic and inevitably noisy data streams in
order to support the decision process of extremely large numbers of concurrent
users.

Stream reasoners were envisioned as systems capable to address all the require-
ments above simultaneously (see Table 1).

Even if the goal can be easily stated, satisfying all above-stated requirements
is challenging in multiple ways. Theoretically, it is difficult to create comprehen-
sive data and processing models. Practically, it is non-trivial to guarantee reac-
tiveness given the required functional requirements. Nonetheless, we have seen
the emergence of various results [67,26]. Different research groups proposed (i)
data models and vocabularies to capture data streams through RDF and on-
tologies (e.g. [47,12]), (ii) continuous query models, languages and prototypes
(e.g. [10,16,60,5]), inspired by SPARQL [82] and collected under the RDF Stream
Processing (RSP) label, (iii) extensions of the reasoning tasks over streams, as
consistency check and closure (e.g. [84,61]), and (iv) applications built on top of
the aforementioned results (e.g. [8,91,51]).

However, a complete answer to the stream reasoning research question is still
missing and recent developments in scalable stream processing engines [100,19]
and scalable OBDA [43] offer opportunities to engineer a new generation of stream
reasoners.

In this article, we introduce a reference model for stream reasoning, which we
use to summarize and organize the results the research has obtained so far. We
then analyse the current trends and identify core challenges for the next years.
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2. A reference model for stream reasoning

In the last ten years, several techniques were proposed under the stream reasoning
label. Such techniques are heterogeneous in terms of input, output and use cases.
To present them, we present Figure 1 as a reference model for stream reasoning.

Figure 1. A model to describe stream reasoners

In the remaining of this paper, we denote a data stream as a sequence of
time-annotated items ordered according to a temporal criteria. Each item brings
an information unit, e.g. a sensor observation, a social network action or a stock
exchange. It is possible to represent the stream items in different format. When
items are represented through RDF (e.g. an RDF graph), we refer to the stream
as RDF stream.

We now present a reference architecture for a generic stream processor, iden-
tified in Figure 1 by the blue blocks. Window operators manage the access to
the stream: they create time-dependent finite views over the streams, namely
windows, over which processors perform the task. Window contains a portion of
the input streams, i.e. a set of timestamped data items, that represent the data
needed to solve the task at the current time instant. Several types of window
operators exist, initially defined in CEP and DSMS research [21].

CEP aims at verifying if given sequences of events happen in the stream.
In this sense, time annotations are key, since engines use them to determine if
temporal constraints defined in the event patterns are satisfied. When not spec-
ified, event patterns are evaluated over a large portion of the stream, i.e. from
the moment on which the engine start to observe the stream up to the current
moment. We can model this behaviour through landmark windows. Fixed an ini-
tial time instant, the window expands over time to capture portion of the stream
that grows over time.

DSMS performs operations like aggregations and filters do not require to
process time annotations after that windows have been computed. That means,
while the content of the stream items is important to solve the task, time anno-
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tations are not. In this sense, the window merge is an operation that moves from
temporal data (i.e. time-annotated data items) to atemporal one (i.e. a collection
of data items). Sliding windows are the typical window operators considered in
DSMS. This operator creates a window with a fixed width in terms of time units
or data items. The operator shifts (slides) the window over time, capturing the
most recent part of the stream.

It is worth noting that time in CEP and DSMS is treated in a different way:
in the former it has a predominant role while evaluating the event patterns, while
in the latter it is used to identify the relevant portion of data over which an
atemporal operation is performed.

We now move a step forward, by adding the reasoning task in the stack de-
scribed above. The key question we need to answer to do it, is: while processing
a stream, when is the correct moment to take into account the inference process?
In SPARQL, the inference process is considered during the basic graph pattern
evaluations over an RDF graph. The reference model described above allows dif-
ferent options, depicted through the orange boxes in Figure 1. It can be before or
after the window (resp. stream- and window-level entailments), or still after that
the window content has been merged (graph-level entailment). This decision may
affect the performance, the result and the behaviour of the engine. Taking into
account this framework, we can group the main works developed in the state of
the art of stream reasoning, in four different groups, that we present in the rest
of this section.

2.1. Graph-level entailment

The first possible possible moment to take into account the inference processes is
after the window merge. That means a window captures a portion of the stream
and a merge operation creates a collection from the stream item contents.

We name graph-level entailment the application of reasoning at this moment.
As explained above, this enables the execution of typical DSMS-like queries, e.g.
aggregations and filters, but make not possible to evaluate CEP-like queries, since
temporal annotations are lost and it is not possible to verify if temporal con-
straints are satisfied. This is represented in Figure 1, where the graph-level en-
tailment stacks on Stream Processing bu not on Event Processing.

The graph-level entailment can be viewed as a direct application of SPARQL
entailment regimes, since the inference process is taken into account in the context
of the evaluation of graph patterns over graphs.

A large amount of research can be captured by this level. In the following,
we group it in two main groups: systems that work under a simple entailment
regime, i.e. RDF entailment, and the ones that considers more complex reasoning
formalisms, e.g. Description Logics and ASP. They are presented respectively in
Sections 2.1.1 and 2.1.3. To enable the comprehension of the latter, we briefly
review some prominent work in incremental reasoning in Section 2.1.2.

2.1.1. Stream reasoning at graph level under simple entailment regime

The first case we consider is the one where RDF entailment process is involved,
that in SPARQL is named simple entailment regime. When a SPARQL query is
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evaluated under this regime, the engine verifies if a graph pattern matches over
the input graph, without considering ontological language or inference processes.

The first generation of stream processors for RDF data stream is represented
in this category: engines where queries are registered and answers are continuously
produced when new data is made available.

Several languages and prototypes were built by following the DSMS vi-
sion: sliding windows to capture finite portion of the streams to be queried
through SPARQL as collections of RDF statements. Between 2010 and 2012, dif-
ferent groups proposed languages as the Continuous SPARQL (C-SPARQL) lan-
guage [10], CQELS-QL [60] and SPARQLstream [16]. Such languages are similar
and relies on the idea of extending SPARQL with sliding windows. For example,
C-SPARQL extends the the FROM clause in order to support sliding windows,
while CQELS-QL pushes sliding windows in the GRAPH clause. There are dif-
ference on the prototyping sides as well. The C-SPARQL engine and CQELS, im-
plementing respectively C-SPARQL and CQELS-QL, take as input RDF streams
and process them as extended SPARQL query processors (e.g. ARQ). morph-
stream, that implements SPARQLstream, adopts a OBDA-like approach: it pro-
cesses relational streams by transforming the query from SPARQLstream to one
to be registered to a DSMS engine such as Esper and GSN.

A different approach is adopted by the Incremental eNgine for STANding
Sparql – INSTANS [85]. As query language, it adopts SPARQL 1.1, with an
extension on its query evaluation model to continuously query data streams. The
implementation of INSTANS relies on the RETE algorithm: tasks are expressed as
networks of queries and compiled in RETE-like structures to evaluate the results.

2.1.2. Incremental reasoning

Among the techniques to do reasoning, the closest to the stream reasoning idea are
the incremental reasoning ones. They have been developed to cope with changes
in knowledge bases. The intuition is to modify part of the materialisation of a
knowledge base when updates happen, without re-materialising everything from
scratch. As update operations occur these techniques identify the facts that have
to be removed – since they were derived by deleted facts – and added – since they
can be inferred by new facts. In this way, it is possible to avoid the recomputation
of the whole materialisation upon changes.

DReD [97] has been proposed in 2005 by Volz et al. and it is inspired by
techniques of view maintenance in databases. The idea is to compute two sets of
axioms to be added and removed through a three-step process. In the first step,
deletions are computed starting from the facts that should be deleted. This step
produces an overestimation, due to the fact that some derived facts may still be
inferred from other non-deleted facts. In the second step, the algorithm looks for
these facts and remove them from the facts to be deleted. In the last step, new
derivations are computed starting from the axioms that have been added to the
knowledge base.

The first two steps of the DReD algorithm are critical for the performance of
the technique: a considerable amount of computational effort may be required to
identify the facts to be labelled as to be deleted in the first step and rectracted
in the second. To overcome this limit, Motik and al. propose the Backward/For-
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ward algorithm [72] in 2015. The idea is to use a combination of backward and
forward inference to limit the number of overestimations in the first step. An im-
plementation of this algorithm is available in RDFox [76], an in-memory datalog
engine.

A different approach is the one considered by Ren and Pan in Truth Main-
tenance Systems in 2011 [84]. Differently from DReD, this technique builds and
maintains a dependency graph. When deletions occur, this graph is used to decide
if derived facts should be removed; when additions happen, the graph is updated
by adding new edges and vertices. This approach is optimised for EL++.

DynamiTE [96] is a framework proposed in 2013 to maintain the materiali-
sation incrementally. One of the novelties introduced by Dynamite is the paral-
lelisation of the inference process. The framework supports DReD and a count-
ing algorithm proposed by the authors for the ρDF fragment [75] of RDFS. On
additions, DynamiTE recomputes the materialisation to add the new entailments
through a parallel Datalog evaluation. On removals, it deletes the explicit and
entailed axioms no longer valid. Several algorithms can perform this action: au-
thors considered DReD and a counting algorithm they defined, that exploits the
idea of counting the number of justifications that entailed it.

2.1.3. Stream reasoning at graph level under other entailment regimes

Moving to non-simple entailment regimes opens a set of challenges given by the
introduction of the ontological languages and the associated inference processes.

One of the first attempts of building a stream reasoner is Streaming Knowl-
edge Bases [98] in 2008. The idea was to pipe a DSMS engine, TelegraphCQ, with
a reasoning engine, the Jena Rule engine. The system is able to performs RDFS
inference.

The Incremental Materialization for RDF Streams algorithm (IMaRS) [28],
proposed in 2011 for the RDFS+ ontological language makes a step further. This
technique focuses the content of a window and the incrementally maintain it as
the window slides. The intuition behind this algorithm is that in this setting, dele-
tions can be foreseen and are not random as in the incremental reasoning setting
described above. An expiration time annotation is associated to all the axioms
involved in the materialisation, and such information is exploited to identify only
the facts to be deleted, avoiding the overestimation typical of DReD. An imple-
mentation of IMaRS is available in Sparkwave [57]. It implements the algorithm
on the top of the RETE algorithm and targets the RDF Schema entailment. RDF
schema axioms are encoded as RETE rules and organised in a network. When
new facts are added to the system, they are matched against the rules.

Another stream reasoner is StreamRule [70], proposed in 2013. As Streaming
Knowledge Bases, the system is designed through a two-layer approach. The first
layer is an RSP engine acting as a filter, that reduces the amount of data to be
considered in the inference process. The second layer is a reasoning engine. What
makes StreamRule unique w.r.t. the solution described above is the adoption of
Answer Set Programming (ASP) [34], rather than a DL reasoner. ASP is a declar-
ative problem-solving paradigm, characterized by rich modelling language main-
taining very good performance, obtained by exploiting techniques from constraint
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solving. ASP works with static knowledge; Incremental ASP [42] overcomes such
a limit and extends ASP to compute the solutions incrementally.

The principle of working on a graph captured with a time window was also ap-
plied to inductive reasoning. In [11], authors used graph-level inductive reasoning
in developing a recommendation engine that suggest topics to users.

2.2. Window-level entailment

We learned that graph-level entailment is a direct application of atemporal rea-
soning techniques over streams. The main drawback is that the process uses only
a subset of the available information bought in the stream – it considers the data
item contents but not the relative temporal annotations. For example CEP-like
queries cannot be evaluated when stream reasoners such entailment.

Window-level entailment overcomes these limits, by applying the inference
process context of the fixed windows produced by the window operators defined
by the users while defining the task. Differently from the graph-level entailment,
which works on graphs (ontologies), the window-level entailment applies the in-
ference process to a window, i.e. a finite sequence of timestamped data items.

The Spatial and Temporal ontology Access with a Reasoning-based Query
Language (STARQL) [77] proposes a framework to access and query heteroge-
neous sensor data through ontologies. STARQL is structured as a two-layer frame-
work, composed by an Ontology Language, to model the data and its schema,
and an Embedded Constraint Language, to compose the queries. STARQL of-
fers window operators, clauses to express event matching and a layer to integrate
static and streaming data. STARQL uses a sequence of time-annotated ontologies
to make inference taking into account the temporal annotationsof the streaming
data. Recently, STARQL has been implemented in Exastream [52], a system that
adopts an OBDA approach, similar to morph-stream.

2.3. Stream-level entailment

One of the main limits of the window-level entailment is that it does consider
only a recent portion of the ontology substream: when a sliding window computes
a new window is computed, what happened in the past is forgotten and the
entailment regime is applied from scratch restarting by the data contained in the
new fixed window.

The stream-level entailment overcomes such a limit, considering a larger por-
tion of the stream than the one defined by the user through window operator.
Even if the name suggests that this entailment regime considers the whole stream,
in this case the reasoning is made on the top of a landmark window That is a win-
dow that captures the stream from an initial time instant (e.g. when the source
starts to supply the data when the engine starts to monitor the stream) up to
now.

ETALIS (Event TrAnsaction Logic Inference System) [5] is a CEP-based
stream reasoning engine. This query model processes streams where data items
are annotated with two timestamps (i.e., time intervals). Users can specify event
processing tasks in ETALIS using two declarative rule-based languages, ETALIS
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Language for Events (ELE) and Event Processing SPARQL [4] (EP-SPARQL).
The former language is more expressive than the latter, even if it is less usable.
A common point is that complex events are derived from simpler events using
deductive prolog rules. EP-SPARQL supports backward temporal reasoning over
RDFS, continuously evaluating the query over the whole stream received by the
engine.

The Logic-based framework for Analyzing Reasoning over Streams [13]
(LARS) defines a logic for modelling stream-related axioms. LARS models the
notion of stream as a sequence of time-annotated formulas. In addition to the
usual boolean operators (and, or, implies, not), the language introduces opera-
tors, such as ♦ and � to express the fact that a formula holds respectively at some
time in the past and every time in the past; @ to state that a formula holds at a
specific time instant. LARS formulas can be evaluated against the whole stream,
or the scope can be limited through the usage of the � operator, that models a
window operator. Through this operator, LARS is also able to capture reasoning
at window-level entailment.

The principle of reasoning at stream-level was also applied to inductive rea-
soning. In [63], authors used stream-level inductive reasoning in predicting Knowl-
edge in an Ontology Stream.

3. Open problems and research questions

Stream reasoning research progressed and expanded its initial community to a
growing number of practitioners. In this section, we can review the requirements
presented in Section 1 in the light of the current state of the art and outline the
open questions.

Table 2. A review of the stream reasoning requirements w.r.t. the current state of the art

(?=not specifically treated so far, ??= treated bot not resolved, ? ? ?=universally addressed by
all studies)

Requirement Current Stream Reasoning

R1: Volume ?

R2: Velocity ? ? ?

R3: Variety ??

R4: Incompleteness ?

R5: Noise ?

R6: Timely fashion ??

R7: Fine-grained access ? ? ?

R8: Complex domains ??

R9: What users need ??

Table 2 summarizes the current state and serves as a indication towards
possible directions for future stream reasoning research. Both stream processing
and semantic web let users express and use complex notions in queries, such as
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trends, skylines and aggregations. However, users are demanding for even more
sophisticated features (R9), as discussed in Section 3.1.

Stream reasoning has always considered being in timely fashion (R6) impor-
tant. It is possible to observe it by observing that time performance is usually the
most relevant axis on which perform evaluations. Similarly, the focus has been
on data streams with rich data models. In this sense, the requirement related to
complex domains (R8) has been partially treated. However, we should consider
this requirements in a broader sense. As we explain in Section 3.2 not only stream
does reasoning needs to consider more expressive ontological languages, but it
also needs to look at non-deductive reasoning.

Velocity and fine-grained access (R2 and R7) have been the two requirements
at the centre of the research so far. Indeed, all studies on stream reasoning so far
addressed the velocity dimension of the problem, considering streaming data the
main object of investigation. In future, as we present in Section 3.3, we expect to
assist to the rise of smart streams that leverage semantics for processing.

Volume and variety (R1 and R3) have not been properly addressed, but they
are key requirements to enable stream reasoning in real-world big data environ-
ments. We discuss this in Section 3.4.

Finally, massive data is common, but real-world data is often characterized
also by being imperfect, i.e. incomplete and noisy (R4 and R5). In this direction,
stream reasoning research is still at the starting point. In Section 3.5 we analyze
these research opportunities.

3.1. Towards queries that capture user needs

Queries connect users to stream reasoners: they encode the needs of the former in
a format readable and processable by the latter. Research on query languages has
been one of the leading topics of the stream reasoning trend up to now. There has
been the first wave of languages, e.g. [10,60,16,4], refined and improved by new
proposals to increase the expressiveness and the supported operations, e.g. [77,41].
In parallel, research has worked on comparing and contrasting such languages,
e.g. [30,23,49,29].

Despite the results obtained so far, the research on query languages for stream
reasoning is far from being complete. In this section, we present three directions
that, in our opinion, are needed to reduce of the distance between stream reasoners
and users (and consequently, real applications).

3.1.1. Capturing a wider set of tasks in queries

So far, language development focused primarily on SPARQL-like queries, where
the main goal is matching of graph patterns over the streaming data under some
entailment regimes. This kind of query sets the basis to filter, aggregate, as well
as detect trends and complex event patterns in the data. However, there are
other important tasks to be performed over streams. One example are spatial
operations, that allow to define geographical and trajectory queries. They have
been largely studied in semantic web and stream processing (e.g. [59,79,80]), but
have not been tackled in stream reasoning so far.
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In several domains, there is the need to perform complex analyses of streaming
data that make heavy use of aggregation, correlation functions and arithmetic
operations as well as of inductive methods. Examples of this trend are big data
processors, where solutions such as Apache Spark [101], Apache Flink [19] and
Twitter Heron [58] offer an extensive set of operations, from counting algorithms
up to machine learning methods [69]. Solutions in this direction, which we may
call analytics-aware stream reasoning, are starting to appear [54] and we expect
a large interest in investigating this area in the near future.

Analytics provides insights, but users often also want fine grain access to
the information that support those insights. This calls for optimizing a special
type of continuous queries that include preferences in the information need, e.g.
continuous top-k queries [74]. Some initial works exist on top-k query answering
in SPARQL, but to the best of our knowledge there is only a vision paper [27]
that cast some light in this direction. No one has attempted, yet, to investigate
this area.

Moreover, the graph structure of the RDF data model opens the doors to the
application of the classical algorithms related to the graph theory, e.g. path find-
ing, connectivity, bipartiteness and clique search. How to apply such techniques
to graph streams has been studied in the database literature [68].

Whilst there are examples for supporting these kinds of operations on static
data (e.g., [55]), to the best of our knowledge, none of the stream reasoning-related
query languages designed up to now support the above operations. Given the
importance these non-deductive techniques have gained over the past few years
(just think about the rise of machine learning), we strongly believe that the next
years see the addition of new operations and the design of languages that support
them. It may still be remain important to offer declarative languages (in addition
to programmable APIs) to describe task, since they separate the expected output
(the goal to the computation) from the way on which it should be computed and
may—in some cases—be easier to handle by domain experts.

3.1.2. Tightening CEP and stream reasoning

It is worth considering the relation between CEP and stream reasoning. CEP
queries are de-facto production rules: if a set of temporal constraints over events
are satisfied (condition), then a complex event is triggered (action). That means
a CEP-based stream reasoner has two inference components: one based on CEP
rules and another one based on ontological axioms.

This consideration opens the door to several questions, such as: which part of
the knowledge better fits the CEP rules and which one better fits ontology axioms?
We can imagine that while some parts of the knowledge can be modelled as CEP
rules or ontological axioms only, others may be captured by both formalisms. Such
modelling decisions have an impact on the evaluation engine, its performance and
the results it computes.

Another question is: how can the two components be combined? Following
the framework presented in Section 2, the CEP evaluation is on the top of the
ontology inference process. A well-marked separation between the two components
is a safeguard with regards to complexity, but may not fit some applications. For
example, a use case may require that the output of CEP reasoning will result
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in changes to the ontological entailment, which in turn may trigger CEP rules.
In such cases, the interaction of the two deduction sub-systems may affect the
performance, with the risk to end up in endless processes. One possible solution
to the problem is to identify which are the conditions under which CEP rules
maintain the decidability of the stream reasoning process, similarly to the research
on DL-safe rules in [73].

3.1.3. Forgetting knowledge

While processing streams, the identification of data that is useful for the current
computation can be problematic. Several solutions have been proposed up to
now, from sliding windows mechanisms DSMSs, to consumption and selection
policies in CEPs. Such methods are key since they allow to discard data and keep
under control the resource usage, and are currently adapted by stream reasoning
solutions, e.g. sliding windows in CQELS and consumption policies in Etalis.
However, they may lead to unexpected situations, e.g. a fact may fall out of the
window while it is still relevant in the inference process.

In the context of stream reasoning, there is the opportunity to develop more
sophisticated forgetting mechanisms. The notion of consumption is slightly differ-
ent from the one of expiration [15]: consumed facts are not useful for processing,
whilst expired facts are not true anymore. Incremental reasoning (Section 2.1.2)
relies on the idea that data is removed because it expires. Similarly, initial work on
stream reasoning like IMaRS assumes that consumption and expiration overlaps.
However, this is not always the case: while some input data can be consumed
(e.g. by a sliding window), some derivations may still be useful to solve the task.
It follows that such derived data should not be consumed at the same time. We
need models and techniques to manage consumption and expiration separately.
In this way, the semantics of forgetting data becomes more precise, improving the
quality of the engine answers.

Another approach is to exploit the semantics and knowledge about the data
content to identify the relevant information. Ongoing research in stream process-
ing is studying how to use knowledge about the streaming data to define windows,
e.g. session windows in Google Dataflow [2] and frames [44]. The idea behind such
techniques is to create windows by using specific information in the data (e.g. a
session identifier in a server access log), rather than by using generic information
such as time or number or elements. Moving from stream processing to stream
reasoning, TEF-SPARQL [41] allows users to define facts as time-annotated ele-
ments by declaring a set of conditions on the input stream items. The approach
presented in [99] introduces the notion of semantic importance, as a set of metrics
assigned to the stream items, such as query contribution and provenance. These
values lead the process of deciding which information should be consumed.

3.2. Towards sophisticated stream reasoning

As the stream reasoning name suggests, reasoning plays a crucial role. In this
section, we describe two directions related to this topic. The first is the study of
more expressive formalisms for deductive reasoning, such as temporal logics and,
more in general, alternatives to description logics. The second is the integration
of deductive reasoning with other types of reasoning, such as the inductive one.
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3.2.1. Extending the range of ontological languages

After ten years of stream reasoning investigation, it appears that logic languages
are most popular for stream reasoning. Most of the works reported in this paper
use or slightly extend OWL 2 DL and its fragments.

In the next years, we think it is important to investigate other inference ap-
proaches and how they can be combined with OWL. First steps in this direction
were taken using ASP [34,42]. The processing of data streams with Metric Tem-
poral Logic was pioneered in [46] and it is now attracting again interests [93,18].
However, as already noticed in [25], several other logics also appear to be valid
starting points, e.g. temporal action logic [33], step logic [36], active logic [35] and
event calculus [88].

3.2.2. Integrating other types of reasoning

One of the characterising elements of stream reasoning is the presence of a model,
possibly in combination with rich background knowledge. They are usually de-
scribed through an ontological language, which enables the derivation of implicit
information. When queries extend the set of operators as described above, an
interesting challenge will be to investigate how several reasoning techniques can
coexist.

For example, let’s consider the system that integrates machine learning and
deductive reasoning algorithms described in the end of Section 2.1.3. The authors
of [11] built a system that pipes the results of an RSP engine into a machine
learning system. However, this is just one possibility. The latter may also feed the
former (as in [64]). Moreover, it is possible to exploit more interactive paradigms,
where results of machine learning and reasoning techniques are continuously ex-
changed to achieve a given goal.

In addition to the machine learning mentioned above, we hope to observe an
increasing number of explorations that study how to combine (deductive) stream
reasoning with other techniques, such as probabilistic reasoning, planning, natural
language processing, sentiment analysis.

3.3. Towards semantic streams

One of the ways to introduce semantics is through annotations: they can describe
data in a machine-readable fashion, and can consequently be read and processed
by systems. Even if this is a typical Semantic Web scenario, so far this direction
has not deeply been investigated in stream reasoning. There is a potential value
in annotating streams: it enables stream processors to access a description of the
stream and to use it to take decisions, e.g. dynamic discovery and selection of
data sources.

The stream descriptor can provide quantitative and qualitative information
about the content, e.g. statistical data about frequency and size, information
about the vocabularies adopted in the stream items and provenance. Such infor-
mation may help the stream reasoner in taking some decisions on how to process
the stream, even before starting to receive it, e.g. relevancy of the data w.r.t. the
registered queries, query optimisation or need for data eviction techniques.
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The description of the stream may provide knowledge about its content. We
can indeed observe that stream content is heterogeneous in nature. A stream may
bring states (e.g. the temperature in a room), producing data items in a periodic
way (e.g. every 2 seconds) or when the state change (e.g. when the temperature
increases of one degree). Streams may also describe sequences of actions (e.g. the
log of the user interaction in a Web site).

When the query developer aims at describing a task for a stream reasoner,
it is up to him to know what the stream carries and consequently to take proper
decisions. By exploiting annotations about the stream it would be possible to
improve the interoperability at application level: tools may assist the development
of queries over the stream and help domain experts with limited technical skills.

3.4. Towards scalable stream reasoners

The progress on stream reasoning foundations sets the basis to build a new gener-
ation of more sophisticated stream reasoning frameworks. Researchers integrate
reasoning processes in a gradual way, from the application of reasoning over the
window content as an ontology, e.g. Streaming Knowledge Bases and Sparkwave,
to more sophisticated solutions that take into account also the time dimension
and the transient nature of the data stream items in the reasoning process, e.g.
ExaStream. In the following, we will present the main challenges that stream
reasoner researchers and engineers are going to cope with in order to build new
engines.

Scalability is an open and exciting challenge: which order of throughput will
stream reasoners be able to support?

As known, there are theoretical results that set some constraints to the ve-
locity that stream reasoners may reach. Reasoning computational complexity is
strictly related to the adopted ontological language: the query answering task of
the three OWL 2 dialects can vary from AC0 and polynomial (w.r.t. ABox size)
up to NP and EXP (w.r.t. ABox, TBox and query sizes). In this sense, it is not
possible to expect that a stream reasoner is going to reach the performance of
stream processing solutions.

However, here we observe a trade-off similar the one between memory size
and access time in computer systems, which is solved using a memory hierarchy.
As proposed in [90], a hierarchy of processing steps of increasing complexity can
tackle scalability. Technically, this is doable because reasoning can speed up by
pushing down processing steps in the hierarchy (e.g., query rewriting) and by
post-processing the results coming up from the layer underneath.

3.4.1. Approximating the results

A typical approach to scale stream processing systems is to move from complete
and exact outputs to approximated ones. Such answers are acceptable in a wide
range of scenarios, in particular when tasks require aggregations and small errors
are tolerable, e.g. counting the number of people entering a square or calculating
the average temperature in a building.

There are several ways to achieve approximation. Load shedding [92] tech-
niques capture the idea that the system can produce the output by processing
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a portion of the stream and throwing away the remaining part. Over the years,
several load shedding techniques have been proposed, to select (with the minimal
effort) the data to be evicted to minimise the error of the answer. [40,14] introduce
data eviction in stream reasoning. The main difference of applying load shed-
ding in stream reasoning is the more complex nature of the data items and the
reasoning process itself. Removing data in aggregation operations can introduce
errors that can be estimated and controlled. In stream reasoning, the eviction of
a single fact may drastically affect the inference process, with high impact on the
correctness of the answer.

Besides data eviction, that discards data before processing it, summarization
exploits the idea that output can be computed starting with a summary of the
input data rather than from the whole dataset. Both stream processing and rea-
soning have extensively used these techniques. Summaries in stream processing,
where are also named sketches, are used to reduce the memory consumption of
the engine and to approximate results of aggregations [32]. Several sketch meth-
ods are available, usually tailored to specific kinds of aggregation query, e.g. [20].
Summaries in reasoning follow a similar idea [38,102]: the ontology (or part of it)
is transformed in a smaller representation, over which it is possible to perform
reasoning tasks.

While the above approaches focus on data, other techniques work to sim-
plify the processing, gaining in performance while introducing some degree of
approximation. An example is [78]: authors propose methods to reason over on-
tologies represented in OWL 2 DL through inference processes of OWL 2 EL,
i.e. a tractable fragment of OWL 2 DL. Axioms that cannot be treated in OWL
2 EL (e.g. inverse properties) are managed through ad-hoc rules, applied before
and after the reasoning process. In this way, it is usually possible to apply faster
algorithms to perform the reasoning task, losing the correctness guarantees.

3.4.2. Parallelizing and distributing the stream reasoners

Parallelization and distribution can be seen as an opportunity or as a challenge.
So far stream reasoning was addressed bringing data streams and contextual (or
background) knowledge in one single point. If this point is a cluster, paralleliza-
tion and distribution (in the cluster) is an approach to engineer scalable and
elastic stream reasoners. The first part of this section discusses this opportunity.
However, data streams are parallel and distributed sources in nature. The same
applies to many Web data sources to join data streams with. Pushing computa-
tion to those sources (see also Fog Computing as a broader research field) is the
challenge presented in the second half of this section.

When talking about parallelization and distribution, the intuitive idea is that
the processing can be split and executed at the same time in multiple locations,
e.g. multiple processors in a machine or different nodes in a cluster or a cloud
platform.

Looking at stream reasoning, we can find only some attempts in this direc-
tion, such as However, in the adjacent areas several investigations are available:
in stream processing, e.g. [1,56], in big data processing, e.g. [101,19,58], and in
SPARQL query evaluation, e.g. [45,81,86].
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Engineering a distributed stream reasoner is a challenging task that touches
several scientific and technical problems. Ideally, such a system should maximise
the throughput, finding a perfect balancing between network load (i.e. how data
route through the nodes) and machine load (i.e. the computation loads assigned to
the nodes). It is, therefore, important to understand which are the best topologies,
operators and data distributions to perform the stream reasoning task.

One initial study in this direction is [37]: authors propose to apply graph par-
titioning over linked data streams in the context of continuous query answering.
The goal is to reduce the network load and consequently improve the performance
of the system. Further work is needed to understand the problem of how to cope
with the presence of inference processes in the context of reasoning.

Several contributions are available on parallel and distributed reasoning in
non-streaming settings. One possible way to achieve this is to treat the data as
a set of interconnected ontologies: first reasoning over each ontology is locally
performed and the inference completes by exchanging messages, e.g. [87,9]. More
recent work exploits new parallelization paradigms to perform the reasoning pro-
cess, e.g. [95,71]. The usual problems of distributed reasoners are related to ter-
mination, i.e. decide when nodes can stop the computation, and to duplicates,
i.e. the less duplicated derivations, the higher the performance. The problem in
stream reasoning is exacerbated by the need to provide reactive answers.

The last direction we highlight is related to the data distribution problem.
When considering scenarios like the Web, it often happens that the data is dis-
tributed, controlled by several actors and exposed through services, e.g. SPARQL
endpoints or Web APIs, working with either pull or push mechanisms. In such
contexts, it often happens that data cannot be centralised and permanently stored
in local memory of the stream engine. For example, data cannot fit in the engine
memory, it may change over time (and services may not publish notifications),
or can be only stored for limited amounts of time for legal reasons. This setting
poses interesting challenges to stream reasoning, where responsiveness is one of
the most critical requirements. One of the possible ways to see the problem is the
following: given the data that can be pushed to the processor, which is the needed
contextual remote data to be pulled to solve the given task? In other words, the
challenge is how to achieve the integration of the local and remote data without
losing responsiveness. The initial effort [24,39] works in the setting of linked data
integration of streaming and contextual data for query evaluation purposes. The
idea is to adopt caches where to store a portion of the remote data, updating it
depending on the recent stream content. Another relevant work is the one in [48],
where authors study the problem of integrating distributed dynamic data and
process it through a set of rules. Further techniques are required, since moving
and replicating data in the processing nodes impacts the performance.

3.4.3. Reasoning outside the window

The stream-level entailment offers an additional opportunity for stream reason-
ing. The main challenge is on the resource usage. Given the absence of a sliding
window, which introduces a consumption mechanism for the formula validities,
a reasoner operating under stream-level entailment may require an unrealistic
amount of memory and processing capabilities. In other words, is it possible to
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build a generic framework to perform stream reasoning under stream-level en-
tailment? Under which conditions would it work without exceeding the assigned
amount of resources? Neither LARS nor EP-SPARQL, described in Section 2.3,
is targeting such problems.

LARS allows defining formulas over the whole stream without limiting the
reasoning effect to the window content. However, it is a theoretical framework
and no implementations are available at the moment.

A stream is infinite by definition, but this does not mean that it requires
infinite memory to perform all computations. If a stream is an infinite sequence
of numbers, a DSMS can compute the average of those numbers incrementally
with finite memory. This relates to the database notion of non-blocking operators.
Our intuition is that reasoning outside the window is feasible for non-blocking
reasoning tasks. For instance, it is possible to compute the materialisation of a
stream under the DL-fragment of RDFS when the TBox is fixed. The inference can
be applied to each stream item independently, avoiding the storage of streaming
data to compute future derivations. That is the case of EP-SPARQL and Etalis:
given a fixed schema, all the inference rules are triggered by one data item. In
other words, the reasoning process does not need to access the past to compute
new derivations. Etalis can still have problems with the memory management:
the registered queries may require an infinite amount of memory to compute all
the solutions. However, this is a problem related to the CEP-nature of the system
rather than to the reasoning one.

Building systems that perform window-level entailment require coping with
the problem to introduce controls on the resource usage, in particularly on the
memory usage. A task is usually modelled through a schema, one or more data
streams and a set of operations (represented through a query). We hypothesise
the existence of a class of queries that guarantee an upper bound on resource
usages, given an underlying ontological language. EP-SPARQL supplies evidence
about this since, as explained above, it is possible to execute its query with a
limited amount of memory usage.

Answers to the above question can enable the constructions of new algorithms
to perform stream-level entailment, able to analyse the current scenario and decide
which strategy to adopt to execute the query in a safe way avoiding to exceed
the assigned resource need. For example, a system may decide to compute the
correct answer when the conditions allow it, and move to approximated results
in the other cases, by adopting stream item consumption and summaries.

3.5. Towards robustness to imperfect data

The road to the usage of stream reasoning in real environments goes through
the ability to process imperfect data. Stream processing has always coped with
imperfect data. However, deductive reasoning is sensible to noise and incomplete
data: one single error may lead a system to an overall inconsistent state. In this
section, we discuss the open problems related to stream reasoning with imperfect
data, analyzing first the ones related to heterogeneity and then the ones related
to noise.
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3.5.1. Overcoming the heterogeneity

As we depicted above, reasoning offers a set of methods and solution to cope
with the heterogeneity. In particular, such techniques focus on the problem of
heterogeneity at schema-level: when models are different, OBDA is a solution to
access such data through a conceptual shared model. Tackling this problem is
important, but heterogeneity issues afflict the Stream Reasoning scenario in other
ways.

Data streams can be heterogeneous because they are not synchronised. For in-
stance, imagine two cameras monitoring the same street that report every minute
the number of cars they counted. They report the same number only if they are
in sync. If one camera starts the counting 20 seconds before the other one, the
two counting will differ, but this second situation is normal in an open world.
Similarly, a continuous query may require to join a data stream with background
knowledge served by a pull API, e.g. to monitor the changes in the number of
followers the users mentioned in a stream of microposts, because user profiles
normally are only available via pull API. There is no guarantee that the API is
returning values that are temporally aligned with the data stream. The solution
of this problem requires both a rich semantic description of the data streams (see
Section 3.3) and an extension of Stream Reasoning methods. A possible research
direction is to model all sources as virtual data streams and to offer a synchro-
nisation service to the upper layers of a next generation Stream Reasoner. Such
a layer may also offer the opportunity to homogenise access to stored time-series
and continuously computed predictions.

Another service that such a layer can provide is the on demand discretisation
abstraction of quantities as facts. For instance, a stream reasoner may prefer the
cameras of the example above to report the level of congestion in the street rather
than the counting. However, different applications (or even the same application
in different moments) may require different discretisations. A first step in this
direction is reported in [94], where the authors report on a system able to an-
swer continuous queries over data stream applying a rewriting method for query
answering over temporal fuzzy DL-Lite ontologies.

Finally, heterogeneity can go beyond the data and affect the stream reasoner
as well. Existing stream reasoning techniques differ from each other. It is evident
when the goal is different, but it happens even when they perform the same task
and user may expect the same output. There is an ongoing effort on studying
heterogeneity in stream reasoners. RSEP-QL [30,29] is a reference model to ex-
plain heterogeneity in stream reasoners under simple entailment, while LARS [23]
has been introduced to capture the behaviour of stream reasoners under more
complex regimes. Studying and understanding heterogeneity of stream reasoners
is important to achieve interoperability, standardization and comparison.

3.5.2. Copying with noise

Stream processing has always coped with noise [22]. We can distinguish two dif-
ferent types of noise, given that the streaming item is composed of some content
and a time annotation.

The first one affects the stream item content. Sensors may break and stop to
work. Or worse, they may degrade their precision and provide observations with
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some degree of error, leading the processing to wrong results. The problem is not
limited to the sensor-generated data: streams generated from human interactions
may contain syntactical or semantical errors in the data items. In a stream rea-
soning scenario, this may lead to wrong conclusions and consequently to wrong
decisions and actions.

When the stream has a very simple schema (e.g. a time series), statistical
methods can supply solutions to manage the noise. However, when we consider
more complex schemata, more sophisticated methods may be required. Recently,
techniques to cope with noise in stream reasoning emerged [8,62]. The idea is to
adopt machine learning to process noisy data and to learn models over which to
apply deductive reasoning processes.

The other kind of noise is the one that affects the temporal annotations on
the data item. When considering a single stream, the noise manifests in the out-
of-order phenomena: for some reasons (e.g. during stream production or trans-
mission), the stream engine is receiving stream items in a wrong order. However,
the problem may become more complicated when considering multiple streams.
Different sources are producing and publishing them, and this can lead to the in-
troduction of noise, since they may adopt different, not perfectly aligned clocks to
generate the temporal annotations. Moreover, one stream can be received sensibly
before another one, since the transmission time between two points of a network
can require different time.

Several solutions have been proposed to cope with noise in time in the context
of stream and event processing, e.g. [89,65], and stream reasoning can get an
advantage of such techniques as well. However, we believe that semantics can
offer the opportunity to enhance the existing methods to manage such problems.
Engines can use the rich and machine-readable descriptions of the data streams to
monitor if the received data stream has the correct order. When not, the system
would be aware of issues in the stream, with the possibility to take actions.

4. Conclusions

We are observing an impressive increase of the speed of data production and
consumption. In this paper, we explained how stream reasoning aims at providing
methods and tools to perform sophisticated analyses of such data.

In the beginning, stream reasoning grew with the idea of building such analy-
ses on top of logical and deductive inference. DSMS, CEP and Semantic Web of-
fered solid starting points to kick off the research. Through the years, we have ob-
served the creation of languages, techniques and framework. Those studies pushed
stream reasoning in a broader area, introducing reasoning techniques beyond the
deductive ones. Semantic Scholar and Google Scholar count respectively around
320 and 1000 articles containing ”stream reasoning”4, published in different ar-
eas, from semantic web to artificial intelligence. However, there is still a lot of
research to be done.

We presented the main directions over which stream reasoning research can
continue. Stream reasoners should offer rich query languages, able offer a wider

4Checked at February 2017
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set of operators to encode user needs, and the dedicated infrastructure to evalu-
ate them. Reasoning has taken a more generic connotation, and now it includes
inductive reasoning techniques in addition to logical ones. This trend will grow,
combining different techniques to overcome their limits. Solutions that will need
to be engineered in scalable frameworks, able to integrate and reason over huge
amounts of heterogeneous data while guaranteeing time requirements. And it
will be important to fill the gaps between theoretical models and reality, making
stream reasoning solutions robust and able to cope with issues such as noise, het-
erogeneity. In parallel, it will be important to identify real problems and scenar-
ios where stream reasoning may be a solution. Internet of Things and Industry
4.0 are examples of areas where to apply stream reasoning results. Moreover, it
is necessary to develop benchmarking and evaluation activities, to compare and
contrast the current solutions.

Results obtained up to now are important. In addition to the publications,
some of the mature solutions have been exploited in real scenarios, such as social
media analytics and turbine monitoring. We should get inspired by such results,
and see them as the foundations to build new research and to reach new ambitious
achievements.
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[50] R. Keskisärkkä and E. Blomqvist. Semantic complex event processing for social me-
dia monitoring-a survey. In Proceedings of Social Media and Linked Data for Emer-

gency Response (SMILE) Co-located with the 10th Extended Semantic Web Conference,

Montpellier, France. CEUR workshop proceedings (May 2013), 2013.
[51] E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, S. Lamparter, C. Neuenstadt, Ö. L.
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